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Preface

It was around the beginning of 1984 when Henk Barendregt took the initiative to raise funds
for a project exploring the feasibility of a parallel reduction machine. This initiative proved to
be a very fruitful one with many consequences, amongst which are my decision to join the
University of Amsterdam eventually in 1987 and the completion of this thesis, being the third in

a row of theses born form the Dutch Parallel Reduction Machine Project.

When the Dutch Parallel Reduction Machine Project started in the late summer of 1984, I was
employed as a scientific consultant at the computing division of the Dutch Water-Board.
During one of the stimulating discussions I had with Bob Hertzberger in that time, he drew my
attention to parallel reduction machines in general and the reduction machine project in
particular. Several months later I was allowed to take part in the project on behalf of both the
Water-Board and the University of Amsterdam.

The interest of the Dutch Water-Board was mainly in the development of large parallel
simulation programs, whereas the University of Amsterdam contributed to the project in the
area of parallel computer architecture. The present thesis that arose form this mixture of
interests covers the design of a specialised parallel reduction machine where programming

considerations play an important role.

Viewed in retrospect, the development of a parallel reduction machine has been very successful,
considering the amount of criticism from both scientific and industrial side that had to be faced
during the project. In the past four years much experience has been gained and a vast amount of
knowledge in the area of reduction and its implementation has been acquired in the Computer
Systems Department of the University of Amsterdam. Based on the results as reported in this
thesis we expect in the next three to four years to design an improved version of the present
experimental machine in which new problem areas concerning the exploitation of parallelism

will be explored.

Hilversum, October 1989.
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INTRODUCTION - Parallelism in computer architectures



1 Parallelism in computer architectures

Speed of computation is an essential property of computers. During the history of their
existence the performance of computers has increased by many orders of magnitude, mainly
due to constant improvements in electronic technology. Apart from employing faster
technology it is also possible to raise the speed of computation by the exploitation of
parallelism. Instead of speeding up a computation by increasing the speed of its basic
sequential operations, it is sometimes possible to divide a computation into several independent
parts that may be simultaneously computed on different machines. These simultaneous
calculations can result in a considerable reduction of the execution time that was needed for the
original computation, where the independent parts were evaluated one after the other. An
interesting difference between the two approaches to increase computer performance is that
theoretically there seems to be no restriction on the amount of parallelism that can be exploited,

whereas sequential computation will eventually encounter fundamental physical limitations.

In the recent past the possibility to build parallel computers has become more and more
appealing. On the one hand, switching speed of electronic components has increased to such a
height that the speed of light poses severe limitations on the physical length of interconnections
in a computer. On the other hand, integration technology of semiconductors will soon reach a
point where a complex conventional computer architecture only occupies a fraction of the
effective space on a silicon chip. One of the possibilities to fill up the available space on a
silicon chip is to design regular parallel computers, where a basic processor and communication
design can be copied as often as required. These architectures are often called transparent-,

scalable- or extensible architectures.

Although there is no theoretical upper bound on the amount of parallelism that may be
exploited in an extensible architecture, in practice the cost of communication may pose
restrictions. In extensible architectures the time involved in communication between two
arbitrary processors is not independent of the total number of processors. For a scalable
communication design the cost of message transmission is proportional to the number of
processors in the system. A useful measure with respect to the exploitability of parallelism is the
grain-size of computations. The grain-size of a computation may be defined as the ratio
between the computation cost and communication cost to perform the calculation.

Traditionally, fine-grain and coarse-grain parallelism are distinguished. In a coarse-grain
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computation the computation cost is much higher than the communication cost while the

inverse is true for fine-grain computations.

In the past, both fine-grain and coarse-grain parallelism have been frequently exploited in
computer architectures. The use of pipe-lining in CPU's is an example of fine-grain parallelism.
Small operations like instruction-fetch, decode, operand-fetch and instruction-execution are

performed in parallel as often as possible.

Also coarse-grain parallelism is used in conventional architectures. For instance disk operations
may be executed by specialized processors, while the CPU continues with other tasks. Multi-
processor architectures have been used for twenty years now (e.g. Univac 1100 series), where
the multiple CPU's execute independent sequential user-programs.

What is really new in todays research into parallel architectures, is the exploitation of massive
parallelism. The increase in processing power envisaged by massively parallel architectures is at
least two orders of magnitude compared to sequential execution on such an architecture.

The size and power consumption of computers impose a physical limit on the maximum
achievable computational capacity. In massively parallel architectures processors have to
consume less power and have to be smaller then in single processor designs. The restriction on
size and power consumption dictates the use of relatively slow semiconductor technology in a
massively parallel multi-processor architecture. Therefore the computational power of one
processor in such an architecture is about one tenth or less of the power of a conventional
single processor architecture of the same size as the multi-processor. The exploitation of

parallelism should result in an ample compensation of this loss.

One of the major problems to effectively exploit the capacity of a massively parallel computer is
how parallelism should be specified, or to put it differently: where does the parallelism come
from? One of the possibilities is to choose a suitable programming language and to make use of
all potential parallelism that is present in programs written in that language. Implementations

based on this approach make use of the implicit parallelism present in the language.

For instance, object oriented programming languages [XER81] are based on a computational
model that seems to offer good opportunities to exploit implicit parallelism. The objects in this
model can be considered as the implicit units of parallel computation. Two large projects in the
Netherlands supervised by Philips (DOOM [ODIJ85, ODIJ87] and PRISMA [BEES9]) are
based on the use of an object oriented language to program a parallel machine. Both projects
provide evidence that the choice of a suitable computational model in the form of a computer
language by no means guarantees that massive parallelism is easily implemented. The main
problem is that the specification of parallel computations in the object oriented model does not
state anything about the grain-size of these computations. In both projects the application
program has to provide information on the grain-size of parallel computations. For instance, the
parallel relational data-base application on the PRISMA machine uses one-fragment managers

(each of which controls part of a relation) as the grains of parallel computation.
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It turns out that in the implementation of a language on a parallel architecture, there must be a
precise match between the grain-size of parallel computations and the computation-
communication performance ratio of the physical machine. If such a match can not be enforced,
either a large part of the machine stays idle or, on the contrary, it is flooded with fine-grain

computations. Especially the last possibility occurs in the object oriented model.

A similar problem has been reported by the Manchester dataflow group [GURS87]. A special
throttle mechanism [RUG87] had to be incorporated in the data-flow machine to prevent

overflow of the token store.

The grain-size of computations cannot be determined by a compiler, because grain-size is an
undecidable property of a computation. Though it might be possible to devise certain heuristics
to approximate the grain-size at compile time, no successful attempts in this direction have yet
been reported up to the author's knowledge. Many research projects have chosen to base the
implementation of parallelism on explicit grain-size information in the application programs.
The programmer has to provide this information by, for instance, annotating coarse grain
computations in the source text of the program. Implementations based on this approach are
said to make use of explicit coarse grain parallelism. Whereas most former research projects
were based on the use of implicit parallelism [MAG79, GUR87, DARS81, HUDS8S5], several
recent research projects included our own, have chosen only to exploit explicit coarse grain
parallelism [EEK88, MCB87, KEL79, VRESS].

A similar trend can be observed in the development of the fifth generation computer project in
Japan. In the beginning of this project it was believed that merely expressing a program in a
logical language would provide a sufficient amount of potential parallelism for a fifth generation
computer architecture. However, in recent practical parallel implementations parallel

computations are restricted by programmer annotations.

When only explicit coarse grain parallelism is exploited the impact of a particular programming
language on the implementation of a parallel architecture becomes less important. The grain-
size of parallel computations is much more a property of the application program than of the
programming language. When a certain algorithm is well suited for the annotation of coarse-
grain parallel computations in one language, this situation will not change if the algorithm is
recoded in another language. In most implementations grain-size information is not used during
compilation, but is merely passed to the runtime system where it is used for triggering parallel
computations. The programming language is transparent to the annotations of coarse-grain

parallelism. So what is the advantage of the use of a particular language in this situation?

We use functional languages for our parallel architecture because of the excellent properties of
these languages with respect to program transformations. We will show in this thesis that even
parallel programs have to be modified considerably before annotation of explicit parallel
calculations becomes possible. Additional modifications may be necessary to obtain the right

balance between grain-size and architecture. These modifications can be elegantly performed by
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(formal) program transformations when the application program is expressed in a functional
language. We have developed a number of program transformations that allow parallel
application programs to be developed in a systematical way from (mathematical) specification
to a well balanced version for a parallel architecture.

Using functional languages, program transformations can be more easily generalized,
formalized and automated than using other languages. The main reason for this is that
functional languages are referentially transparent. A language is called referentially transparent
when multiple occurrences of a reference (variable) all denote the same value, independent of
the place of the references in the program text (neglecting scope rules). Program
transformations modify the syntactical appearance of the program. Therefore references may
obtain a different position in the source text of the program. Referential transparency

guarantees that the value of these references will not change.

Less formally expressed referential transparency means that once a variable obtains a certain
value, references to that variable will always yield the same value. In particular this property
forbids the use of an assignment operator, because it would then be possible to change the
value of a variable by assignment, possibly resulting in different values for different occurrences

of the same reference.

In principle, logical languages are also referential transparent. However, in contrast to
functional languages, all implementations of logical languages contain non-referential
transparent features (referential opaque features). The presence of these features (like the

"cut-mark" in Prolog) make program transformations a lot more difficult.

Computer architectures that exploit all possibilities for parallel evaluation are called fine-grain
architectures. In particular such architectures do not impose a lower bound on the grain size of
parallel computations. In contrast, computer architectures that only exploit parallel
computations with a grain-size above a certain threshold are called coarse-grain architectures.
The trend towards the exploitation of coarse grain parallelism that is observed in the Japanese
fifth generation project, the DOOM project, the PRISMA project and several reduction
machine projects increases the relevance of our own research into coarse grain extensible
architectures, in which from the beginning exploitation of parallelism was based on explicit

annotation of coarse grain computations in the application program.

To show the viability of basic concepts underlying a parallel architecture, care must be taken
with the measurements that are supposed to provide the evidence of successful operation of the
architecture in question. For instance, in the area of compilation techniques for functional
languages the efficiency of the proposed method is often demonstrated with performance
results based on the "nfib" program [BRU87, JOH84, FAI87, MEY 88]. These results cannot be
considered of any real value, because the proposed compiler optimizations, which seem to
work for such toy programs, may fail to produce the same results in case of larger application

programs. The reason for a different behaviour on larger programs is that the optimization
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algorithms are based on undecidable properties of the source program, like the amount of
sharing of expressions and the strictness of user-defined functions. The algorithms trying to
derive information about these properties perform much better on simple programs than on

complex ones.

For the same reason the use of toy programs to demonstrate the efficient exploitation of
parallelism (either implicit or explicit), may produce unrealistic results. It is relatively easy to
implement optimizations that produce good results for small programs.

Therefore we have based the performance analysis of our architecture on parallel programs of
at least medium size. To support the construction of larger parallel applications we have
developed two program transformation methods, corresponding to two basically different ways

in which coarse grain parallelism may be obtained.

The first method, which we call data-partitioning, is applicable when a program specifies a
coarse grain computation that may be split into several finer grains. The second method, which
we call data-grouping, can be applied when an application consists of many fine grain
computations that may be grouped into fewer but coarser grains. The data-partitioning method
can handle divide-and-conquer algorithms, whereas the data-grouping method is used for

programs written as networks of communicating processes.

How a given application program is transformed into a parallel version is illustrated in table 1.
First, one has to determine if the application belongs to one of the two classes that we can deal
with. If so, table 1 shows in which order transformations have to be applied. The table also
indicates to what extent the transformations are formalized, how they are called and in which

chapter they are described.

data-grouping formalized | data-partitioning formalized
transformations transformations
(chapter 7) (chapter 5)

1) | communication lifting yes — --

2) |job lifting specialized | job lifting yes

3) | grain size transformation specialized | grain size transformation yes

4) |own transformation no -- --

Table 1: transformations for data-grouping and data-partitioning

Although it appears from table 1 that step 2 and 3 of the data-grouping transformations are
identical to the corresponding steps in the data-partitioning transformations, they are in fact
specialized versions of the latter. A program resulting from a communication lifting

transformation has such a specific form that specialized versions of the job-lifting and grain-size
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transformations are justified (These specialised versions are called the sandwich transformations

in chapter 7).

We have applied the transformations of table 1 to a small set of realistic applications. The
resulting parallel programs have been used to evaluate the performance of our architecture (see
chapter 8). The data-partitioning transformations produced parallel versions of e.g. the fast
Fourier transform, Wang's algorithm and a scheduling program. With data-grouping

transformations we constructed a parallel version of a tidal model of the North Sea.

None of the transformations has been automated so far, although the formal descriptions
suggest that a substantial part of the transformations may be implemented as tools assisting the
programmer to create parallel programs. The construction of correctness proofs for the

proposed transformations is a possible subject for future research.

To analyse the performance of large application runs we have developed the method of hybrid
simulation. This method allows to obtain realistic performance results for large application
programs without having to go through a complete implementation of a parallel architecture.
Lower layers of the architecture (i.e. layers close to the hardware) are actually implemented on
the target machine. A realistic simulation of these layers would take an unproportionally large

amount of computing time, effectively shutting off the possibility to measure large applications.

Higher layers are not implemented on the target architecture. Instead they are simulated on a
general purpose sequential host computer. Data obtained by the simulation is used as input for
the implementation of the lower layers on the target architecture. Measurements obtained from
the target machine are fed back into a performance model of the overall architecture. Figure 1
shows the flow of information for hybrid simulation. The simulation executes the application
program and computes an execution profile that contains all data relevant to the lower level
layers. The performance model uses both the execution profile and the data obtained from

measurements on the target architecture.

Application Program Performance results

L execution T
Simulation of the profile Performance
higher layers model
execution
profile

Host computer

performance Target architecture
measurements

Implementation o
the lower layers

Figure 1: Hybrid Simulation




chap | Parallelism in computer architectures 21

Hybrid simulation is applied in chapter 8 to evaluate the performance of our parallel

architecture described in chapter 3 and 4.

In this thesis the exploitation of parallelism in computer architectures is studied in relation to
one specific computational model: the reduction model. This model has been chosen because of
the outstanding properties with respect to program transformation and parallel evaluation
strategies. Although logical languages are claimed to have the same properties, parallel
evaluation strategies turn out to be much more difficult to implement than in case of reduction.
We have already mentioned the practical drawbacks of logical languages concerning program

transformations.

The work reported in this thesis provides evidence that coarse-grain parallel reduction is
applicable to a wide range of application programs. We present an efficient mapping of several
parallel functional programs onto a coarse-grain architecture. In addition we show that these
programs can be developed in a systematical way using several transformations. By means of
hybrid simulation, measurements are obtained for the developed programs on our experimental
parallel reduction machine. Based on these results we present an analysis of the performance of

this architecture covering the whole implementation trajectory.

To reduce the amount of work involved in studying the implementation of parallel reduction,

two a-priory restrictions have been made:

At first, it was decided only to consider coarse grain parallelism. The reasons for this choice are
of a practical nature. At the University of Amsterdam already much experience had been gained
with coarse grain parallel architectures in the area of data-acquisition and filtering for high
energy physics experiments. Because of the close collaboration with the physics department, it
was relatively easy to construct a coarse grain parallel architecture based on the use of dual-

ported memories (see chapter 3 and 4).

The second decision concerns the separation of sequential reduction and the control of
parallelism. The use of coarse-grain "strict argument” parallelism allows the design of a parallel
reduction model that is valid for all possible implementations of sequential reduction (see
chapter 5). The issues covered by this thesis are centred around this coarse-grain parallel
reduction model. The model requires annotation of parallel coarse-grain expressions in
application programs, but it does not specify how these expressions have to be (sequentially)
reduced. Any sequential implementation of reduction can be plugged into the parallel model.
The decision appeared to be fruitful, because much progress has been made in the
implementation of sequential reduction. These results can be directly used in the

implementation of our reduction model.
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1.1 Synopsis

Chapter 2 provides a short introduction into the reduction model of computation. Next, an
overview is presented of the various ways in which reduction can be implemented. The
overview provides the reader with some basic information about the implementation of
reduction that will be used in the subsequent chapter on parallel reduction architectures. The

subject of implementing sequential reduction is not further pursued in this thesis.

Chapter 3 presents two models that will be used to describe respectively abstract- and concrete
architectures. The concepts and terminology of these two models together with the concepts
related to the implementation of reduction (chapter 2) constitute a framework for the
comparison of parallel reduction architectures. Chapter 3 contains a comparative description of
some parallel reduction machines, within the given framework. Our own architecture, the
Amsterdam Parallel Experimental Reduction Machine (APERM) is contrasted with the

described architectures by highlighting the major differences and similarities.

Chapter 4 presents a more detailed description of APERM. Special attention is paid to the data-
communication support based on dual ported memories. The advantage of the architecture with

respect to the minimization of communication cost is discussed.

A coarse grain parallel reduction model is proposed in chapter 5. The grains of parallel
evaluation are called jobs. The model is referred to as the job-based reduction model. The
remainder of chapter 5 is devoted to the mapping of divide-and-conquer algorithms onto the

job-based reduction model. Two program transformations are proposed to achieve this goal.

In chapter 6 a moderately sized application program is developed in a functional language. It is
shown that a mathematical model of the tides in the North Sea can be systematically
transformed into a coarse grain parallel functional program. The resulting program looks like a
network of communicating processes. The transformations developed in chapter 5 to map
divide-and-conquer algorithms onto the job-based reduction model appear to be insufficient to

deal with process networks.

In chapter 7 additional transformations are proposed to widen the class of application programs
that can profit from parallel evaluation in our reduction model. Also applications written as
(functional) process networks are now included. As an example of these transformations the
tidal simulation of chapter 6 is mapped onto the job-based reduction model. An additional
application of a simulation of digital hardware is included in chapter 7, to show that also a

collection of fine-grain communicating processes can be mapped onto the job-model.

Chapter 8 shows that the job-based reduction model can be efficiently mapped onto the
APERM architecture. Several aspects of the abstract- and concrete architecture of APERM are
discussed. Amongst these are the use of execution profiles of application programs in

loadbalancing decisions and a presentation of the abstract instruction set concerning process-
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management and communication. Next, a simple performance model for APERM is developed
and is applied to the results of hybrid simulation. In this way the performance of the application

programs developed in the chapters 5, 6 and 7 is evaluated.



Chapter Il

INTRODUCTION - Implementation of reduction



2. Implementation of reduction

Most computer architectures are based on a computational model proposed by Alan Turing in
the 1930's. The essential property of the Turing model is that computation is performed by a
sequence of commands, that manipulate the state of the computation. Programming languages
based on the Turing model are often called imperative languages. The word "imperative" is
inspired by the property that the abstract machine provided by the language is "instructed" by a
sequence of commands. Computer architectures based on the Turing model are often called
Von Neumann machines, named after Johannes von Neumann, who replaced the infinite
sequential-access memory of the Turing model by a random-access memory, containing both

data and program.

In 1936 Alan Turing proved that his model is equivalent to the lambda calculus of Alonzo
Church, in the sense that both models describe the same class of functions. Turing and Church
tried to mould the intuitive notion of a "computable" function into concrete. The conjecture is
that every computable function can be expressed in the lambda calculus. However, the intuitive
notion of "computability" leaves the possibility open that somebody might come along and
compute a function that cannot be expressed in the lambda calculus. The inverse of the
conjecture, namely that every function expressed in the lambda calculus can be computed, is the

basis of computers.

Programming languages can be viewed as "syntactically sugared" versions of the underlying
computational model. No extra power is added by a programming language, only the ease of
expressing frequently occurring problems is increased. Languages based on the lambda calculus
are called functional languages and a program written in a functional language is called a
functional program. From the equivalence of the models of Turing and Church it follows that it
is always possible to translate a functional program into an equivalent imperative program and
vice versa. Recently it has been shown that the compilation of functional programs into

imperative code can produce very efficient results [JOH84, FAIS7].

Although the models of Turing and Church are equivalent, they are very different in nature. For
instance, the lambda calculus is not "imperative". There is no sequence of commands to be
executed, but merely an expression that has to be reduced (the computational mechanism of the
lambda calculus is referred to as reduction). Computational models like the lambda calculus,

without the notion of a state that changes during time, are called declarative. In contrast to the
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imperative model of Turing, a computation in such models is "declared" in a more or less static
way. Programming languages based on a declarative model are referential transparent (see
chapter 1). Once a reference denotes a certain value, there is no (assignment) mechanism that
can change this value any more. All copies of the reference will denote the same value during
evaluation of the program.

Another example of a declarative computational model is the interpretation of Horn-clauses by
a computational mechanism called resolution [ROB65]. Languages based on Horn-clauses are

called logical languages and the resolution mechanism is often referred to as inference.

In this thesis we confine our attention to the reduction model of computation in relation to

hardware- and software implementation aspects of parallel architectures.

2.1 Parallelism in functional programs

The development of parallel programs in the imperative model is relatively difficult. Global
state information that is present in imperative programs has to be distributed in some way
amongst the parallel computations. After distribution, all computations still have the possibility
to change any part of the global state. The programmer has to include explicit communication
and synchronization instructions in the program to accomplish global state changes. In general,
both the division of the global state and the insertion of communication instructions are no easy
tasks.

For functional programs the transition from sequential to parallel programs is less complicated.
No special language elements, like communication primitives in imperative languages, are
needed. This is because parallelism is implicitly present in a functional program. An example of
a functional expression may clarify this point:

@+4)* (-2

In the example the sub-expressions (3 + 4) and (5 - 2) may be evaluated in parallel. Although
the example only shows a simple expression, the observed independence of subexpressions
holds in general: Due to referential transparency, sub-expressions in functional programs are
independent and may be evaluated in parallel. This parallelism is called implicit, because there is
no language-construct that indicates which expressions are valid candidates for parallel

evaluation.

Implicit parallelism can be exploited, either by making it explicit in the source text of the
program or by trying to detect it automaticly. In the first case the programmer is required to
provide annotations, marking sub-expressions that can be safely computed in parallel. In the
second case a compiler or a run-time system takes care of the parallelism. In both cases the
correctness of the program is not affected by the transition from sequential to parallel

evaluation.
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With respect to massively parallel computer architectures, most functional programs do not
exhibit a sufficient amount of implicit parallelism, or the parallelism is too fine grained to be
exploited. It is necessary to transform most application programs to make them suited for
efficient evaluation on a parallel architecture. The additional complexity of these
transformations should be compared with the effort that is necessary to design parallel
programs in the imperative style. Because of the referential transparency, declarative languages
and especially functional languages are well suited for the development of program
transformations. Chapters 5, 6 and 7 discuss transformation techniques that can be used to

obtain efficient parallel functional programs for a broad class of applications.

2.2 Reduction

The reduction principle can be viewed as replacing expressions by other expressions, based on
certain rules. In this view a functional program consists of a set of reduction rules and a main
expression. During the evaluation of the program, the main expression is repeatedly rewritten,
replacing sub-expressions as prescribed by the rules, until no more replacements are possible.
The expression is then said to be in normal form and represents the final answer of the
program. The action of performing one replacement is called a reduction step. An expression

that can be replaced is called a redex (reducible expression).

The order in which the reduction rules are applied is known as the reduction strategy. For
instance one may have sequential or parallel strategies. An important property of practical
reduction systems is the fact that all reduction strategies yield the same answer, provided the
reduction process terminates. Reduction systems having this property are called Church-Rosser
or confluent. In principle the Church-Rosser property allows any degree of parallelism during
the evaluation of a program. The possibility of non-termination spoils the perspective of having
the complete freedom to rewrite all reducible expressions in parallel. Some of these expressions
might fail to terminate, whereas they will later appear not to be needed in the construction of
the final answer. If a parallel architecture happens to assign non-terminating expressions to all
of the available processing power, the program will never terminate, while there still exists a
reduction path to the final answer of the program. Thus all reduction strategies that compute a
normal form will compute the same normal form. However, not all strategies arrive at a normal

form.

Most sequential implementations of reduction use one of the following two reduction
strategies: normal order reduction and applicative order reduction. The normal order strategy
takes the leftmost outermost redex as the next expression to be reduced. While the program has
not yet reached its normal form, the leftmost outermost redex is always uniquely defined.
Therefore normal order reduction implies sequential evaluation. The applicative order strategy

takes one of the innermost redexes as the next expression(s) to be reduced, for instance the
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leftmost innermost one when sequential evaluation is aimed for. Some practical strategies for

parallel reduction are discussed in section 3.3.

Normal order reduction has better termination properties than applicative order reduction. The
leftmost outermost redex is always needed to construct the answer of the program. In contrast,
an innermost redex may not be needed in the final answer (for instance when it is part of a
conditional expression). An applicative order reduction strategy risks to get stuck, evaluating a

non terminating expression that is not needed for the answer of the program.

As an example of reduction rules we will briefly illustrate the a- and -reductions of the

lambda calculus. Consider for instance the following reduction step:
(Ax . xy Xx)a — aya

In the lambda calculus terms are built by juxtaposition of variables (like x, y and a) or other
terms. The juxtaposition represents function application. A term built from two variables like
x y means the application of the function x to the argument y. A term like x y x should be
interpreted as (x y) x : the function (xy) applied to the argument x: Thus juxtaposition

associates to the left.

Prefixing an expression by a lambda followed by a variable and a dot, like in Ax . x y x, is called
abstraction. It means that a function is created, where the variable x will later be replaced by the
argument that will be given to this function. Thus applying Ax . x y x to a variable « yields a y
a. This substitution is called B-reduction. The variable x is called bound by the lambda prefix.
The variable y is called a free variable in the term Ax . x y x, because it is not bound by any
lambda.

Although the substitution mechanism implied by [-reduction may seem rather simple, there is a
subtle difficulty that is illustrated by the next example, where two consecutive [3-reduction steps

are executed incorrectly:

AX.Ay.xyx)yb — Ay.yyy b — bbb
In the first step the free variable y becomes bound by accident, just because it is substituted in a
lambda term that happens to be an abstraction of y. Renaming the inner lambda abstraction (for

instance y to z) prevents the accidental binding, without changing the meaning of the

expression:
AM.(Ay.xy Xx)yb — Ax.(Az.xzx) yb
- (z.yzyb - yby
Before [-reduction is performed the term Ay.xyx is first replaced by Az. xzx, which

prevents the undesired binding that would otherwise arise during the first substitution. This

renaming is called a-reduction.
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The substitution mechanism implicated by [3- and a-reduction is probably too complicated to
serve as a primitive machine model [BER75, KLU83]. It can be shown that under certain
conditions O-reduction can be omitted for sequential reduction [PEY87a]. However, if parallel

reduction has to be possible, both the a- and the -reduction must be implemented.

2.3  Implementation techniques

The implementation of reduction has already a long history. In 1960 the language LISP was
proposed by McCarthy, as an implementation of the lambda calculus (without a-reduction!). In
1963 Landin published an abstract machine called the SECD machine, and presented a
compilation scheme for LISP to this machine. The abbreviation stands for Stack, Environment,
Code and Dump. In the next section the environment model will be discussed as one of the

possible implementations of B-reduction.

In 1971 Wadsworth proposed to implement the lambda calculus by the use of graph-reduction
[WAD71]. The graph structure allows shared sub-expressions and saves computation time
when the shared expression contains redexes. Turner combined in 1979 graph-reduction with
combinatorial logic to implement a functional language of his own design, named SASL
(St. Andrews Static Language). He was the first who circumvented the difficulties in
implementing -reduction by the use of combinators [TUR79]. The next improvement in the
implementation technique of functional languages was to replace the fixed combinators used by
Turner with general program-derived combinators. This invention due to Hughes [HUGS82]
was almost immediately followed by the idea to implement program-derived combinators by
compilation to an abstract machine. Compiled graph-reduction was first implemented by
Johnsson and Augustson [JOH84], using an abstract machine that was similar to the SECD

machine of Landin.

Before discussing the implementation techniques of parallel reduction we will first describe the
essentials of the implementation methods that have been mentioned in the historical outline
above.

2.4.1 Basic reduction mechanisms

Three major techniques exist to implement the substitution mechanism that is fundamental for
all reduction systems. They are called string reduction, graph reduction and environment
reduction. The B-reduction rule of the lambda calculus will be used in this section to illustrate
the difference between the three methods. The techniques differ in the way the substitution
process is implemented. String reduction performs substitutions literally, duplicating
expressions (and work!) if needed. Graph reduction avoids the duplication of expressions by
substituting only pointers to expressions. Finally, environment reduction performs no
substitutions at all, but adds to each expression a table that associates the names of bound

variables, occurring in that expression with the values to which the variables are bound. To
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illustrate the difference between the three substitution methods more clearly we show the

reduction of the following example for each method:
(Ax.x y x) a — aya
2.4.1.1 String reduction

The way in which the reduction example is presented already illustrates the technique of string
reduction. In the reduction step the variable x is bound to the expression a. Next, each
occurrence of x is replaced by the literal text (string') of a. The example also shows that the

string a is duplicated by the substitution process.

To compare string reduction with the other two techniques figure 1 shows a graphical
illustration of the same substitution. This graphical representation of lambda terms shows
explicitly the presence of function applications in the form of apply nodes (indicated by an @).
Remember that a space in for instance (x y) means: apply x to y. Figure 1 also shows an

explicit node for each lambda abstraction.

)\,XRa @Aa
¥ X
a y

@/ X
¥ X
Xy

X

Figure 1: String reductionof (Ax.x y x) a — a y a

The dashed arrow in figure 1 indicates the rewriting of the tree structure on the left-hand side
to a new tree structure on the right-hand side. The top nodes of both trees have been drawn
within a box to indicate that they are both the same physical node, representing the value of the
expression. All other nodes on the right-hand side of the arrow (included the nodes in the
subtrees a, y and a) are new. In particular the subtree a has been copied twice. This duplication
of expressions during the substitution process is the reason that string reduction systems have a
poor performance. Especially in recursive functions duplication can give rise to an exponential
growth of work. In reduction systems that use an applicative order strategy, the pain of
duplication is relieved somewhat. The expressions to be duplicated are first reduced to normal
form (because they contain innermost redexes) and then duplicated. The normal form of an
expression contains no more work, and thus only data is duplicated. In chapter 5 special
attention is paid to the issue of avoiding duplication of work in our parallel reduction model

that is partly based on string reduction.

!'In this context strings are always structured objects in which e.g. brackets indicate the structure.
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2.4.1.2 Graph reduction

Figure 2 illustrates graph-reduction of A-terms as proposed by Wadsworth [WAD71]. In the
reduction step of figure 2 only one new node is created to build the graph on the right hand side
of the dashed arrow. This new node is the apply node below the top node. All other nodes are
shared with the graph on the left hand side of the arrow (Alhough the top nodes of both graphs

have been drawn seperately, they are the same physical node, indicated by boxes as before).

The algorithm proposed by Wadsworth tries to share as much of the original graph as possible.
In figure 2 this is illustrated by the sharing of node y. On the right hand side a pointer to node y
is used instead of creating a new instance of the whole subgraph rooted at y, as would happen

with string reduction.

If sharing is already present in a graph it is maintained by the reduction algorithm. In figure 2,
sharing of node x on the left hand side results in sharing of node @ on the right hand side. The
substitution of @ into x, is mechanically performed by storing twice a pointer to a in both apply-
nodes of the right hand side graph.

Figure 2: Graph reduction of (Ax. x y x) a — aya

It should be noted that the graph on the left hand side of the dashed arrow can not be discarded
after the reduction step (i.e. "garbage collected"). As graph reduction creates sharing of nodes
(node y in the example), any node of the left hand side graph may already be shared before the
reduction step begins. To recover storage space occupied by those parts of the program graph

that are no more referenced a garbage collection algorithm has to be used.

The sharing of bound variables in a lambda expression (x in the example) and the preservation
of this sharing by the graph reduction algorithm, is the reason that work will never be
duplicated, as was the case in string reduction. Graph-reduction can therefore be performed

efficiently, even when reduction is performed in normal order.
2.4.1.3 Environment reduction

Environment reduction is used in most LISP-interpreters. The environment is a special data

structure in which variable names are associated with their values. On the left hand side of
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figure 3 the application node below the lambda node contains such an environment, in which
the variable y is bound to the value 2. This binding has been established by a former reduction
step. The current reduction step that is illustrated in figure 3 copies the application node below

the lambda node into the root node, extending the environment with the information x = a.

In contrast to graph reduction (and string reduction), environment reduction performs no
substitutions when a lambda expression is applied. Instead the environment is extended with the
value of the variable that is bound. In figure 3, the right hand side graph is constructed without

creating any new nodes.

Although it seems that no substitution is performed, the environment has to be dereferenced
when the value of a variable is needed. The reduction process as illustrated in figure 3, is only
part of an environment based reduction system. The way in which the environment is built and

dereferenced forms a major part of the (in)efficiency of such a system.

Figure 3: Environment reduction of (Ax. x y x) a — aya

A mechanism to avoid the use of names in the environment has been proposed by De Bruijn
[BRUI72]. The variables in an expression are replaced by a number that indicates the lambda to
which the variable belongs. This number is equal to the number of lambda symbols encountered
on the way up in the graph, form the variable up to (but not including) the lambda symbol to
which it belongs. For instance Ax. (x (Ay. x y)) becomes A. (0 (A. 1 0)). The lambda symbols
become anonymous, and the variables are a kind of relative pointers to the lambda symbols.
Therefore it seems as if d-reduction is no longer needed. In stead, a renumbering of variables
can be performed in substituted terms. However, this is computationally just as expensive as Q-

reduction.

De Bruijn numbers can be considered as an offset in the environment, when the value of a
variable is required. This property is for instance used by Curien in his categorial abstract
machine [COUSS5].

The implementation of functional languages by a combination of De Bruijn numbering with
environment reduction and an eager reduction strategy is very similar to the implementation of
an imperative language like PASCAL on a stack based abstract machine. The environment that

is created by the lambda applications is equivalent to the stack-frame that is created by an
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imperative function call. In both cases function arguments are first evaluated before being
added to the environment. Variables in an expression are replaced by offsets in the run-time
created environment. It is not surprising that compilers for eager functional languages generate

code with the same efficiency as is usual for imperative languages.
2.4.2 Combinator reduction

In its full generality the process of B-reduction appears to be difficult to implement. However,
more elementary substitution rules can be used to achieve the same effect as B-reduction. In
1924 Schénfinkel [SCHO24] presented a calculus of functions (in which he also introduced
higher order functions and partial application, later unfortunately called Currying) based on a
set of three elementary functions (verSchmeltzungs-, Konstanz-, Unvertriglichkeitsfunktion: S,
C and U). He showed that any formula in first order predicate calculus could be transformed
into an expression merely consisting of applcations of these elementary functions. Following
this idea, it can be proved that expressions based on a fixed set of simple lambda-terms (e.g.
only the S and C of Schonfinkel) have the same computational power as the lambda-calculus.
These simple lambda terms have been called combinators, because they only specify

combinations of their arguments.

Barendregt [BAR84] defines combinators as lambda terms that do not contain free variables
(such terms are also called closed terms). However, combinators used in practice are more
restricted. To simplify mechanical interpretation of combinators by rewrite rules, lambda
abstractions inside a combinator body are not allowed. Thus, a practical combinator
corresponds to a closed lambda expression, in which all lambda abstractions occur directly

concatenated to left side of the expression, like: Ax. (Ay. (Az. ... )).

The S, K and / combinators proposed by Schonfinkel (apparently, the C combinator has later

been renamed to K) are equivalent to the following lambda terms:

S = M. (Ay.(Az.x z (Y 2))
K = AX . (Ay . X)
I = AX . X

From the point of view of mechanical interpretation, combinators can also be considered as
elementary rewrite instructions of an abstract reduction machine. To illustrate this view, we
show the behaviour of the S combinator as implied by the definition of S as a lambda term. An
application of the S combinator to three arguments (@, b and c) is replaced by the equivalent

lambda expression:
Sabec = AX.(Ay.(Az.xz (y z))) abec

The lambda expression can be reduced, applying three [-reductions (multiple B-reductions are

indicated by —* ):

A.(\y.(\z.xz(yz))abc— ac(bc)



36 Implementation of reduction chap II

When we conceive the operation of the S combinator as a single action instead of three [3-
reductions, we obtain the view of a rewrite mechanism. The reduction of (Sa b ¢) is now

defined as a single rewrite rule with the following pattern:
Sabc — ac(bc

A rewrite rule specifies how an expression is textually rewritten to another expression by giving
two patterns connected by an arrow. The left-hand side pattern consists of the name of the
rewrite rule (S) plus a number of variables (a,b,c) that have to match a given expression. For

instance the expression: S (K u v) w (S u) has to be rewritten in the following way:

S (Kuv) w (Su) —  (Ku.v (Su) (w (S_u))
S a b ¢ — a c (b c )
left hand side rewrites to right hand side

The variables a, b, and ¢ on the left hand side of the S-rule can match arbitrary expressions. In
the example a matches (K u v), b matches w and ¢ matches (S u). The right hand side of the S-
rule specifies the resulting expression, when the variables are replaced by the expressions to
which they were matched.

Interpreted as rewrite rules the S, K and / combinators constitute the following rewrite system:

Sabc — ac(bc
Kab — a
| a — a

This rewrite system is sufficiently simple to be considered as an abstract machine model that

may be implemented on a concrete machine architecture.

All closed lambda terms can be translated to terms only containing the S, K, and / combinators.

For example the expression used in the first section becomes:
Ax.(Ay.x y x)) = S SK

An application of this lambda expression can be reduced according to the given rewrite rules
for S, K, and I :

SSKab-— Sa((Ka)b — ab (Kab-— aba

Exactly the same result is obtained in four rewrite steps as would be obtained by performing the
two B-reductions in the original lambda term. Because the rewrite actions described by the

combinator rules are less complex than 3-reduction, more rewrite steps are required.

In 1979 Turner [TUR79] published an efficient compilation scheme to translate the functional
language SASL into a fixed set of a few dozen combinators, all very similar to the SKI
combinators. Turner also proposed an abstract graph reduction machine based on rewrite rules

associated with the combinators. Inspired by this technique, a number of machine architectures



chap II Implementation of reduction 37

have been constructed or simulated (SKIM [CLAR80], NORMA [SCHS86]). Also SKI-based
parallel string reduction machines have been proposed (COBWEB [SHUS85]).

2.4.3 Lambda lifting

It was soon realized that the granularity of the rewrite actions specified by the SKI-combinators
is too fine to be implemented efficiently in hardware (sequential or parallel). It appears
[HARS89] that each SKI-type reduction produces an intermediate result that is largely taken
apart again in the next reduction step. The storage and reclamation of these intermediate results

can be avoided if larger grain combinators could be devised.

Hughes proposed an algorithm to derive larger combinators from the source text of the user
program [HUGS82]. He called these program-derived combinators super-combinators. The
rewrite behaviour of these combinators depends on the contents of the user-program.
Therefore, the set of combinators has become variable (in contrast with the fixed SKI-set),

which seems a disadvantage for the design of special architectures.

A practical algorithm to derive combinators from the user program has been proposed by
Johnsson [JOHS85], called lambda lifting. With the technique of lambda lifting, a functional
program can be converted into a set of possibly recursive, coarse grain combinators. Consider
the following definition of a function F in which H is a combinator that has been defined before

(and is treated as a constant):

F=QAy.H (Ax.y))
The body of F' contains a lambda expression and is therefore not a practical combinator (£ can
not be considered as a rewrite rule because at the time of rewriting it is not known to which
value x will be bound). The nested lambda expression (Ax.y) is not a combinator either,
because it contains a free variable y. The idea behind lambda-lifting is to convert all free

variables into bound variables. In the example this is done by adding a lambda abstraction to

bind y in the inner lambda term and applying the new abstraction to the variable y:
replace (Ax.y) by Ay.(Ax.y)) vy
Applying this conversion to the body of F yields the following definition:
F=Qy.H Qy.(Ax.y)) )
The meaning of the function F has not been changed, but now the sub-expression (Ay . (Ax. y))
fulfils the criteria of a combinator and can be liffed out of the definition of F. If we call the
lifted expression G, the following result is obtained:
Ay.H Gy
Ay - (Ax.y))

Fl
G
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Also F' has become a valid combinator, because the body of F' contains the combinator G in
stead of the original lambda expression. As before, combinator names (H and G inside F') are

considered as constants.

The function F has been converted into a set of combinators: F’, G. These combinators can
now be interpreted by an abstract rewrite machine, in the same way as the SKI combinators
were interpreted in Turners machine. The grain size of the program-derived combinators is
larger, but the set of combinators is not fixed any more, because the combinator definitions

derived by A-lifting depend on the contents of the user program.

The advantage of the lambda lifting transformation is that the resulting combinator definitions
can be considered as locally confined, coarse grain rewrite actions. When the left hand side of a
rewrite rule has been matched to a part of the main expression, the right hand side pattern
together with the obtained bindings for the variables constitute a coarse grain of computation
that may be well suited for distribution in a parallel architecture. The presence of free (global)
variables would complicate parallel reduction, because the value of such a free variables may be
determined by other (rewrite) processes. Synchronization and communication may be needed in
the middle of a rewrite action, when the value of such a free variable is needed. Combinators do
not have free variables (all variables of a combinator are bound before rewriting is performed)

so a rewrite action can be completed without intervening communication.

The grain size of program-derived combinators as they are produced by lambda lifting, may be
so large that a significant opportunity for parallel evaluation is lost. To increase the amount of
available parallelism, Hudak proposes another transformation, which generates finer grain
combinators that are guaranteed to have no parallel sub-structure [HUDS85]. These combinators
are called serial-combinators. In chapter 5 serial combinators are compared with the job-

concept, which is proposed as an essential part of our parallel reduction model.
2.4.4 Term rewriting

Pattern matching is considered to be an important feature in functional languages. It increases
the readability of functional programs. Functions are only capable to generate one result. In
large programs function-results become very complicated structures. In general these structures
have to be taken apart in order to provide input for other functions. Pattern matching is an
elegant mechanism to specify in a function definition which parts of the input structure are

going to be used.

Although pattern matching can be compiled to nested conditional expressions, it can also be
considered as an essential part of the computational mechanism. The inclusion of pattern
matching in rewrite rules results in a so called term rewrite system. The rules are called Term
Rewrite Rules, because both the left-hand side and the right-hand side of the rules may be
general terms. Consider for example the definition of a rule that reverses both elements of a

Cons-pair:
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Reverse (Cons x vy) — (Cons y Xx)

The expression looks like a combinator definition, but the argument of Reverse is not a
variable, but a term: Cons x y. When an expression is rewritten according to the rule for
Reverse, the argument to Reverse has to be matched against the pattern Cons x y. In this
pattern the variables x and y match any expression, but the function identifier Cons only

matches Cons:

Reverse (Cons (Cons 3 4) 5) — (Cons 5 (Cons 3 4))
Reverse (Cons X y) — (Cons y X )
left hand side rewrites to right hand side

During the pattern match the variable x is bound to the term Cons 3 4, and the variable y is
bound to 5.

Because a pattern might fail to produce a match, a set of alternative rules with the same name
but different patterns is allowed in a term rewrite system. With such a set of alternative rules
often complicated nested conditional expressions can be avoided. In general, the use of rules
with alternative patterns considerably reduces the amount of conditional expressions compared
to pure combinator systems. However, in terms of performance it remains questionable if the
advantage of less conditional expressions outweighs the increased complexity of the
computational mechanism by the pattern match algorithm (compared to pure combinator

rewriting).

Combinators can be considered as a special case of term rewrite rules. A combinator is a term
rewrite rule, where the arguments of the rule are only allowed to be variables instead of general
terms. Within the context of the Dutch Parallel Machine Project the research group in Nijmegen
has pursued the approach of using term rewriting as the basic model of computation [BAR87].
For sequential machines they have been able to show that is is possible to implement term

rewriting efficiently via graph reduction.
2.4.5 Compiled reduction of combinators

A fixed set of combinators can be implemented by manually translating the rewrite action
corresponding to each combinator into the machine language of a given architecture. This
results in a fixed set of machine language functions, one for each combinator. This approach is
not practical for program-derived combinators because the manual translation would have to be
repeated for each new program. A mechanical translation scheme has to be found to map
program-derived combinators onto a given architecture. Several solutions to this problem have
been described in literature [JOH84, FAI87, BRU87]. Some of these proposals introduce an
abstract machine that is oriented towards graph reduction. The abstract graph reduction

machine designed by Johnsson, called the G-machine (Gethenborg-machine), has been seriously
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considered as a candidate for a special (sequential) architecture. The proposal by Fairbairn is

very close to a conventional stack machine.
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3 Architectures for parallel reduction

The implementation techniques discussed in the previous chapter, can be used to map the
reduction model of computation onto a concrete computer architecture. To compare such
mappings for several reduction machine designs, we introduce two models to describe the

hardware- and software architecture of (parallel) machines.

In addition to the implementation techniques for reduction, these two models introduce
architectural concepts that we need to construct a uniform framework for the comparison of
parallel reduction architectures. The goal of this qualitative comparison is to identify the
essential aspects in which our own reduction architecture differs from related machines. In
sections 3.1, 3.2 and 3.3 an architectural reference framework is established. In Section 3.4
several parallel reduction machines (including our own architecture) are compared with
reference to the framework. Finally, section 3.5 presents some design considerations for the
architecture of our reduction machine. The discussion in chapter 3.5 supplements other design

considerations in chapter 4.

3.1 Architecture models

Computer architectures can be considered from at least two different viewpoints. An
architecture can not only be seen as a layered structure of hardware components, but may also

be viewed as a hierarchy of abstract machines.

The first view is reflected in the hardware architecture model of figure 1. This model describes
the structure of physical objects that make up a computer. When a number of physical
components perform a certain distinct function, this group of objects will appear as a basic

element in the next higher layer of the model.

The second view gives rise to the software architecture model of figure 1. This model describes
the structure of the instuction code that is stored in the computer. When a piece of code
performs a certain distinct function, it becomes a basic instruction in the next higher layer of the

model.
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hardware architecture model software architecture model

functional language layer

reduction machine layer
Program Memory Switch layer abstract machine layer

Register Transfer layer machine language layer

micro-programming layer

logic layer

circuit layer

Figure 1: A hardware and software architecture reference model.

Most proposals for parallel reduction machines do not pay much attention to architectural
models. Consequently there is no universal agreement, neither on terminology nor on models

for architectures.

We adopt a model from Bell and Newell [BEL71, BEL79] for the hardware architecture. The
model used for the software architecture is similar to the one described by Tanenbaum
[TANS4], but in this context the layers and terminology are specially adapted to reduction
machines. A relation between the two models is suggested in figure 1, by drawing
corresponding layers of both models at the same height. The relation will be explained during
the description of the software architecture model. First, we shortly describe the hardware

architecture model.

On the lowest level of the hardware model, called the circuit layer, a computer consists of
passive and active electrical circuits. The behaviour of the machine is described in voltages and
currents. On the next higher level, the logical layer, an architecture is represented in terms of
logical circuits. The behaviour of these circuits can be described by discrete states, like "true"
and "false". The representation on the logical level uses no information typically belonging to
the circuit layer, like current or voltage. In other words: the logical layer abstracts away from

electrical characteristics.

In the third layer a computer is viewed as a collection of registers and arithmetic functions
operating on the contents of these registers. The notion of boolean values of the previous layer
is now replaced by the concept of binary numbers. The layer is called the Register Transfer
layer (RT-layer). The description of an architecture on this level is a collection of rules that
specify the transfer of numerical values between registers and functional units. The rules are

triggered by conditional expressions on the state of the machine.

On the highest level a hardware architecture can be considered as a collection of processors,
memories, communication switches, input-output controllers etc. The layer corresponding to

this level has been called PMS -layer, which is an abbreviation of the three most important
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components on this level: Processors, Memories, Switches. The PMS-layer presents the overall
structure of a computer in such a way that performance aspects can be easily identified. Typical
parameters of this layer are the rate of data transfers, the size of register banks, caches,

memories, the capacity of processors etc.

It is interesting to note that several years after Bell and Newell proposed the model, functional
units on the RT-level became available as LSI-circuits. Nowadays, even modules on the PMS-
layer are integrated into VLSI designs. In future on-going miniturization will give rise to the
integration of several PMS-functions into one module. The GAP-chip [DAV84], which
contains 72 simple processors connected into an array structure, is an early example of this
trend. May be such a development leads to the necessity to introduce a layer above the PMS-

layer, in which complete sub-architectures are distinguished as basic components.

All layers of the hardware model always represent a parallel machine. Each layer describes the
behaviour of the architecture with respect to time. At any instant of time many actions may take

place in parallel. The concept of a sequential machine only exists in the software architecture.

The second view of a computer architecture, has been proposed by Tanenbaum [TANS84],
although it is claimed by Bell, Mudge and McNamara [BEL79] that the idea is due to J.V. Levy
(1974). In this view the software architecture of a computer is considered as a hierarchy of

interpreters (or compilers) of abstract machines.

The lowest layer of the software model describes a computer as a collection of basic sequential
machine instructions. Therefore it is called the machine language layer. The instructions are
interpreted by a piece of hardware that is specified on the RT-level. That is why the machine
language layer in figure 1 is drawn on the same height as the RT- layer of the hardware model.

The illustration stresses the fact that the machine language layer corresponds to the RT-layer.

Tanenbaum [TANGS84] distinguishes a layer below the machine language layer, called the micro-
programming layer. However, this layer is not applicable to all architectures. Micro-
programming can be viewed as an implementation of the RT-level specifications of the
hardware model. Other (and faster) implementations exist on this level to achieve the same
result. In modern RISC designs the micro-programming layer has been abandoned in favour of

a lower level (sequential) machine language layer.

The next layer of the abstract machine architecture is called the operating system layer
[TANS84]. In conventional machine architectures this layer is implemented by a machine
language program, called the operating system. In experimental architectures only certain
functions of a conventional operating system are actually implemented. The abstract machine
model that is provided on this level may be quite different from the machine model offered by
conventional operating systems. Therefore we prefer to call this layer the abstract machine

layer.
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The abstract machine can be considered as a programming model corresponding to the PMS-
layer of the hardware model. The machine language layer is extended by instructions to
support, for instance, process management, memory management, communication and load
distribution. These activities correspond to components that are distinguished in the PMS-layer
of the hardware architecture. Therefore the abstract machine layer in figure 1 is drawn at the

same height as the PMS-layer.

The third layer of the software model is called the reduction machine layer. On this level the
basic reduction mechanism is supported by a suitable abstract instruction set (e.g. combinators,
G-code). The instruction set may be compiled to instructions of the abstract machine layer.
Older proposals for reduction architectures [TUR79] use an interpreter to implement

operations of the reduction machine layer.

Special hardware reduction architectures like the G-machine [KIE85], SKIM [CLARS80] and
NORMA [SCH&86] provide an instruction set on the machine language level that is specially
tailored to support operations of the reduction machine layer. This optimization is primarily
reflected in the RT-layer of the architecture and in some respects also in the PMS-layer, e.g. a

parallel garbage collection processor.

The highest layer of the software architecture model is called the functional language layer.
Although many functional languages exist, they do not give rise to differences in the reduction
machine layer that are significant from the architectural point of view. After compilation to the
reduction machine layer, most aspects of a functional language that are important for the lower

layers of the implementation are still manifest (e.g. normal order semantics, user-annotations).

The implementation techniques for reduction as discussed in the previous chapter (e.g.
translation to program-derived combinators) are equally applicable to all functional languages.
The complexity to derive information on sharing of expressions and strictness of functions is

the same for all functional languages.

Some functional languages (e.g. SASL [TUR79]) allow less restricted types than other
languages (e.g. Miranda [TUR85]). In the implementation this may lead to run-time checks on
the type of expressions. These checks can be omitted in strongly typed languages resulting in
higher reduction speed. For the present discussion of parallel reduction architectures we ignore

this aspect and consequently differences in functional languages do not need to be considered.

3.2 Lower levels of the framework

The reference framework that will be established consists of a set of architectural properties.
These properties represent essential aspects of the implementation of parallel reduction,
corresponding to all layers of the hardware and software architecture model. The higher level

properties in the framework are more reduction specific, whereas the lower level properties are
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related to parallel architectures in general. Therefore we split the presentation of the framework

and the comparison in two parts.

The first part is described in this section and covers the architectural properties of the abstract
machine layer (software model) and the corresponding PMS-layer (hardware model). Relevant

properties of lower layers are also included in the first part.

The second part that will be presented in the next section covers the higher layers of the

software model.

The discussion of the abstract machine layer in literature on parallel reduction machines is often
rather superficial. The abstract machine is frequently presented by a model that describes the
interaction between processes and storage (a process-storage model [WAT87]). Such a model
gives a global impression of the abstract instructions concerning process management, memory
management and communication. For a number of parallel reduction machines some abstract
machine models and their corresponding PMS-layer descriptions will be reviewed in the next

subsections.
3.2.1 Alice, Flagship and Rediflow

An abstract machine model that is used in several parallel reduction machine designs (Alice,

Flagship, Rediflow) is shown in figure 2.

Figure 2: The abstract machine model of the Flagship- and Rediflow architecture.

In this model a number of processes (P) can access concurrently one shared storage space (M).
Processes may be dynamicly created and deleted and communication may occur between each
pair of processes. The abstract machine model of figure 2 is similar to the abstract machine
model found in conventional sequential architectures. It does not reflect the differences in

communication- and memory bandwidth that may exist in the hardware.

The architecture of figure 2 may be implemented by different PMS-descriptions of the

hardware. Three configurations are shown in figures 3a, 3b and figure 4.
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Figure 3a: The PMS-description of a cache-based Figure 3b: The PMS-description of

shared memory architecture. the Flagship architecture

In figure 3a each processor (P) has direct access to a cache memory (CM) and shared access
(via the cache) to a partitioned global memory (M). The communication switch (S) may serve
several memory accesses simultaneously. In this way partitioning of the shared memory can be
exploited. In addition the caches will avoid many accesses through the switch, if computations
exhibit locality.

The architecture of figure 3a is currently used in several experimental parallel machines [PFI85,
NGUS88, WIL88]. The implementation of reduction on such an architecture is particularly
interesting because the property of referential transparency may reduce the cost of maintaining
cache coherency. For instance, when expressions are cached that are in normal form, they will
never be updated. On the other hand, if a redex happens to be copied in several caches, all
those copies will eventually reduce to the same value. When, after reduction of a cached redex,
coherence between caches and main memory is not reestablished, only computation time will be
wasted, incorrect answers will not be produced. Therefore, (cheaper) variants of coherence

mechanisms may be possible that do not maintain complete coherence at any instant of time.

An architecture similar to the one in figure 3a that is used for parallel reduction is the Alice
machine [DAR81, EIS87]. However, no hardware supported caches are provided. Instead
reduction processors are provided with small local memories where function definitions are
stored in a cache-like manner. To access and rewrite redexes, procesors always have to access
main memory through the communication switch. In the Alice machine, processors are clusters
of Transputers [WHI85] and the communication switch is implemented as a multi-stage delta-

network based on a specially designed ECL-chip.
A different approach is taken by the Flagship project [WAT86, WAT87]. In comparison to the

architecture of figure 3a, one could say that the cache size is significantly increased and the
main memory is completely discarded. However, the memories in the Flagship machine are no
hardware caches but normal memories. Each local memory contains part of the global address

space. These parts may overlap and copies of the same subgraph may exist in several local
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memories, which bears some ressemblance to caching. It is not yet specified how coherence is

dealt with. The data communication switch will be probably implemented as a delta-network.
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Figure 4: The PMS-description of the Rediflow architecture.

Figure 4 shows the PMS-level architecture that has been used by Keller in a simulation of the
Rediflow machine [KEL84, KEL86]. A number of identical processing elements are configured
into a regular 2-dimensional mesh-structure. Each processing element consists of a memory
connected to five processors. Four of these (C) are specially devoted to communication. They
provide parallel DMA-transfer capability to the surrounding processing elements. The fifth
processor (P) is a general purpose programmable processor used to implement the abstract
machine. The processing element conceived by Keller is similar to the Transputer architecture
[WHISS].

3.2.2 ZAPP

An abstract machine model that does not support a single addressable storage space is shown
in figure 5. This model has been used for the implementation of parallel reduction in the ZAPP
proposal [MCBS87].

S

OO OO0 OO

M1 M2 M3

Figure 5: The abstract machine model of the ZAPP architecture.

The total storage space is divided in several disjunct fixed spaces (M). Each sub-space can be

accessed by a number of processes. These processes may be created dynamicly but once in
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existence they are not allowed to migrate between memory spaces. Communication instructions

are provided in the abstract machine to synchronize two processes and to transport data.

The ZAPP abstract machine model has been implemented on a PMS-level architecture identical
to the one illustrated in figure 4. The main difference between the models of ZAPP and
Rediflow is that the former model does not try to hide the relatively slow access to remote

memories, while the latter architecture does.
3.2.3 GRIP

Although on a higher level the abstract machine model of the GRIP machine [PEY87b, CLA86]
may be described by the model of figure 2, there is a fundamental asymmetry in the design that
justifies a lower level illustration. The philosophy behind GRIP is to increase the grain size of
the operations on the shared memory. Instead of simple read/write actions on a word by word
basis, the memory (M) is provided with processing capacity to perform higher level (reduction
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Figure 6: The abstract machine model of the GRIP architecture.

This results is an abstract machine model shown in figure 6. There is a pool of processes (P),
each of which operates on one shared memory. The memory is accessed via intermediate
special purpose processes (I). These processes perform reduction specific operations. A single
global memory address space is realized by the global communication address space between

processes P and .
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Figure 7: The PMS-description of the GRIP architecture.
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Figure 7 illustrates the PMS-level architecture of the GRIP machine. Processors are clustered in
groups. Each processor is provided with a local memory. There is one shared bus-connection
(S) between the processors in a group. The interconnection between clusters is realized by a
second shared bus-connection (PS) and a special interface processor (C). The processors in a
cluster are not identical. One of them (I) performs specialized functions supporting graph
reduction on a large local memory. The other four processors (P) only have a small local

memory and are responsible for the actual graph reduction.

The specialized processors (I) are intended to increase the functionality of memory operations
(intelligent memories). This may reduce the amount of memory operations while increasing the
size of the information to be transported. Therefore it becomes possible to exploit a packet
switch protocol on the bus PS. The local buses S are normal circuit switched (one word at a
time) buses. It is expected that the packet switched bus achieves a high utilization factor, which

would reduce the disadvantage of this bus as a potential bottle-neck in the architecture.
3.24 APERM

The abstract machine model of APREM (Amsterdam Parallel Experimental Reduction
Machine) is similar to the ZAPP model. However, for efficiency reasons two abstract

communication mechanisms are introduced.

| S1

Sddd Hod e

M1

=
\S]
=

[ | S2

Figure 8: The abstract machine model of the APERM architecture.

The first mechanism allows processes to synchronize and transport a small amount of data
(connection S1 in figure 8). The second mechanism copies large graph structures from one
storage space to another. The copy is performed without process synchronization (connection
S2 in figure 8). Synchronized transport involves a number of duplications of the data to be
communicated. Some of these duplications can be avoided when data is transferred without
process synchronization. A more detailed account on this issue can be found in chapter 8. As
far as we know, our architecture is the first reduction machine that features a separation of

synchronized process communication and unsynchronized bulk-data transport.
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A second difference with the ZAPP abstract machine model is that processes in APERM are

static. A fixed number of processes is associated to each storage sub-space.

In contrast to the other architectures, the current design APERM features a single process (C)
to control the distribution of reduction tasks in the machine. The principles of loadbalancing

mechanisms are compared in the next sections on the higher level aspects of architectures.

The PMS-description of APERM is illustrated in figure 9. It is composed of processors
interconnected by dual ported memories. The advantage of such connections compared to a
general communication switch is the high bandwidth. Data may be transferred from one
memory to an adjacent memory at the full rate of one word per memory cycle. A more detailed
account on the PMS-level design of APERM is given in section 3.5 and chapter 4. A more

detailed account on the APERM abstract machine model is presented in chapter 8.
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Figure 9: The PMS-description of the APERM architecture.

3.3  Higher levels of the framework

The higher layers of the abstract architecture constitute the second part of the reference
framework. It mainly concerns the reduction machine layer and the translation to the abstract
machine layer. The functional language layer is not considered because the differences between
the various functional languages in use are not of significant importance from the architectural

point of view (see section 3.1).

The following architectural properties (a-e) constitute the higher level part of the reference

framework:
a) The representation of the program in the abstract reduction machine.

Possible representations are based on graphs, trees or strings. A tree representation can be

considered as a graph without sharing. A string representation is a tree without pointers.
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Strings are stored in consecutive storage places in the abstract reduction machine. Strings have

to be delimited with special marks to indicate the beginning and the ending.
b) The reduction mechanism.

The instruction set of the abstract reduction machine has to support one of the basic reduction
mechanisms: [-reduction, fixed combinator reduction or program-derived combinator
reduction. The reduction machine is mapped onto the abstract machine by means of compilation

or interpretation.

The reduction process on the level of the abstract reduction machine can be divided in three

different activities:

1) finding reducible expressions
2) reducing these expressions
3) collecting garbage

Especially the first and the last activity probably consume a considerable amount of the
computation power involved in reduction. Hartel discusses this issue in detail in his thesis on
storage management in fixed combinator reduction machines [HAR89]. In the present
comparison we will only briefly indicate what kind of garbage collection is proposed for the

considered architectures:
C) Garbage collection method
d) Parallelism in the abstract reduction machine (reduction strategy)

The Church-Rosser property of practical reduction systems implies that multiple reducible
expressions may be rewritten in parallel as long as it is guaranteed that the program terminates.
Not all reducible expressions in a program are needed to compute the final answer of that
program. The conditional function (if then else) is an example of a function that does not need
all its arguments to compute its answer. A safe approach to parallel reduction is only to
compute those redexes in parallel that are known to be needed for the final answer. This form
of parallelism is called strict argument parallelism. A function is called strict in an argument if

the argument is needed to compute the function.

The problem with strict argument parallelism is that it is not always possible to determine if an
argument is needed in a computation. An additional problem is that only part of an argument
may be needed. For instance one can imagine a computation that only needs all even elements
of a given list. If such a list is computed in parallel to the main computation then twice the
amount of work would be done compared to what is needed (assuming that all elements of the
list require the same amount of computation). Still it may be advantageous to evaluate a "partly
needed" data-structure in parallel, even though part of the work is not needed. On the other
hand it might not be worth to perform a fully needed computation in parallel if its grain-size is

too small.
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Parallel reduction can be based on strict-argument parallelism or on other parallel strategies. An
example of a safe parallel strategy that also reduces non-strict arguments is the Gross-Knuth
strategy. A Gross-Knuth reduction step consists of two phases. In the first phase the set of all
current reducible expressions is determined. During the second phase, all expressions in the set
are rewritten in a random order. This means that the strategy repeatedly advances all
computations by one reduction step. The random order of the reduction steps in the second
phase implies that as much parallelism can be used as is available. Both needed and not-needed
computations are performed and evenly spread over the available processing power. The
Gross-Knuth strategy specifies fine grain parallel computations. However, grain-size can be
increased by a variant of the strategy. In this variant all parallel computations are advanced by a
fixed number of reduction steps instead of one. The Gross-Knuth strategy can be compared to a

breadth-first evaluation of goals in a (parallel) inference machine.

All practical approaches to parallel reduction use strict argument parallelism. Methods have
been developed to determine strictness information during compile time [PEY87a]. Strictness
analysis may be supplemented with heuristic information about the grain-size of combinators
[HUDSS]. In such a way the triggering of parallelism is indicated by the compiler and the

programmer does not need to provide knowledge about parallelism in the program.

Because in practice both strictness analysis and grain-size heuristics have not yet proved to be
very effective, much better results can be obtained if some indications about these two
properties are provided by the programmer.

In addition to the previous reduction specific properties (a,b and c¢) the following general issues

concerning parallel architectures will also be considered in the architecture comparison:
e) Grain size

The grain-size of a computation is the ratio of the amount of work and the amount of
datacommunication involved in the computation. For a particular architecture these amounts
can be translated into durations. The computation- and communication performance of an
architecture together with the grain-size of computations determine if parallel evaluation may

reduce the overall execution time compared to sequential evaluation.

f) locality

An issue closely related to grain-size is locality. Two kinds of locality may be distinguished:
locality in time and locality in space. In relation to a single computation these concepts may be
informally defined in the following way:

When a computation remains active for a relatively long period of time, its locality in time is
said to be relatively high. Thus, locality in time corresponds to the amount of work involved in
a computation. On the other hand, when a computation only uses data located in a relatively

small area of the storage space, its locality in space is said to be relatively high. Thus, locality in
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space is inversely proportional to the amount of datacommunication in a parallel architecture.
The two types of locality in relation to a single computation will not be included in our

reference framework because they are already captured by the grain-size property.

Locality in space can also be defined in relation to a group of parallel activities. A group of
computations has a high locality in space when most of their activities are confined to a
relatively small area of storage space. The latter type of locality will be included as a separate

property in the framework of our comparison for the following reason:

When a group of fine grain computations with a high locality in space is executed in the local
memory of a single processor they may together form an activity of coarse grain size. If an
architecture succeeds to establish this kind of locality, even fine grain calculations may be

executed efficiently on a distributed memory architecture.

The most efficient implementations of reduction use a graph representation of the program. An
interesting question is wether a collection of rewrite actions on the graph posses some form of
locality in space. The Flagship project is based on the assumption that such a locality in space

can be established by the run-time system.

In our approach to parallel reduction locality in space is simply enforced by copying an
annotated coarse-grain expression to a contiguous remote storage area. The cost of duplicating

the expression has to be weighted against the benefits of parallel evaluation.
g) Loadbalancing

Loadbalancing is a mechanism in parallel architectures to obtain an even distribution of parallel
activities (load) over the available processing power. Loadbalancing information may be
calculated at compile-time, possibly with the aid of programmer annotations. In contrast,
distribution of parallel tasks may be computed at run-time. The run-time scheduling of tasks
can be decided in one logical centre or, alternatively, the computation of scheduling may be
implemented in a distributed fashion. The latter type of loadbalancing is often used in the form

of diffusion scheduling, where only local criteria are used to migrate tasks.

Summarizing the following aspects may be distinguished: loadbalancing annotations, compile-

time loadbalancing, centralized run-time loadbalancing, distributed run-time loadbalancing.

3.4  Comparison of parallel reduction machines

In the next subsections a number of parallel reduction machines will be discussed and a tabular
overview of this discussion is presented in figure 10. For each property of the reference
framework (a-g) a separate table is shown. In addition table /# summarizes the properties of the
lower levels of the framework, referring to the figures presented in section 3.2. Table i is
included to give an impression of the present state of performance analysis in the various

projects.
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3.4.1 Mago's FP-machine

A proposal for an architecture based on string reduction is Mago's FP-machine [MAG79,
MILS89]. Reduction is performed in applicative order. Therefore the disadvantage of string
reduction is alleviated somewhat, because no duplication of work will occur when strings are
copied. Still large data structures may be copied, where sharing could have been used. An

advantage is that some of the copying may be performed in parallel.

The reduction mechanism is based on a fixed set of combinators, proposed as the FP-language
by Backus [BAC78]. The language FP, as a consequence of being a combinator language, uses
no variables. An FP program can be viewed as one combinator expression applied to a data-

structure.

In contrast to the elementary combinators used by Turner, the FP-combinators are quite
complex. They are supposed to be sufficient as a programming language. From an architectural
point of view the FP-combinators are well suited for special parallel hardware implementations.
The rewriting actions look like vector instructions. It was part of the philosophy of the design
of FP to specify large computations as basic machine instructions. The Mago-machine may

work well when large data-structures have to be processed.

The PMS architecture of the FP-machine is a collection of reduction processors (called leaf
processors) interconnected by a tree-shape network. The leaf processors contain the expression
string that has to be reduced. The internal nodes of the tree are also active processors
supporting simple state transition functions. For instance, the detection of reducible expressions
takes place in the network. The top-node of a sub-tree that spans a reducible expression knows
that it is responsible for the rewriting of the expression. This node will control all actions that
are necessary for the rewriting. It uses the sub-tree to gather and broadcast arguments to the
right places. The broadcasting mechanism in the tree of processors allows an expression to be

copied to many places in one action.

Computations in Mago's FP-machine will exhibit much locality. The string reduction
mechanism creates locality by copying expressions to locally confined regions (sequences of
leaf processors). In addition the garbage collection scheme increases locality by squeezing
garbage out of strings of leaf processors. This is accomplished by shifting the contents of

processors into adjacent unused (or garbage) leaf processors.

Locality increases the performance of the Mago-machine. Reduction will speed up if a reducible
string is confined to a short sequence of leaf processors. This is because the spanning tree of

the string will be relatively small and few communication hops will be needed.
3.4.2 The AMPS machine

The AMPS architecture (Applicative Multi Processor Architecture) is one of the first machines

that performs coarse-grain normal order graph reduction [KEL79]. Parallelism is triggered by
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strict functions. However, only needed arguments with a sufficient coarse grain size will be
evaluated in parallel. The application of a user-defined function is considered to be the right
grain of parallelism. The disadvantage of this approach is that the grain-size of user-defined

functions may vary considerably.

Reduction is based on graph rewriting. Only a fixed set of primitive rewrite-rules (Flow Graph

Lisp, FGL) is supported. User-defined rewrite rules may be composed from the FGL rules.

One of the FGL-rules is the "invoke"-function, which rewrites itself into a pre-defined FGL-
graph, representing a user-defined rule (the one that is invoked). The implementation copies the
pre-defined graph to the place where it has been "invoked". In order to perform this copying
efficiently, user-defined rules are packed into a contiguous block of nodes. The invoke function
is a coarse-grain operation that avoids many memory allocation steps and pointer copying that
would occur in a fine grain combinator machine (e.g NORMA, SKIM). One should realize that
this idea was published at the same time that Turner published the implementation of SASL
based on fine-grain SKI-combinators. It would still take several years before super-combinators

were invented.

The AMPS architecture consists of a collection of FGL-processors connected to a tree-shaped
network. The network serves two purposes: data-transport and loadbalancing. If the distance
between parent and child processes remains small (locality is maintained), the tree topology will
transport data efficiently. If locality is lost, messages have to travel high up the tree, and a
communication bottle-neck will arise. The loadbalancing mechanism has to maintain the

locality. It has not been shown that this is actually the case.

The nodes in the tree network are simple processors. Apart from transporting data, they also
monitor the load in their sub-trees. After adding up the load figures reported by its child-trees,
a node presents the result to its parent node. All nodes in the tree continuously perform this
load calculation. If a node detects a difference in the load of its child trees that exceeds a
certain threshold, it initiates the transfer of reduction tasks from the most loaded sub-tree to the

less loaded sub-trees.

The AMPS architecture supports one global address space though each FGL-processor only
has local memory. The coarse grain-size of tasks should compensate the communication

overhead caused by the implementation of a single global address space.

The AMPS architecture contains a number of well chosen architectural features: Only coarse
grain reduction tasks are evaluated in parallel, diffusion scheduling is used for loadbalancing,
reduction is based on coarse grain graph-rewrite rules and finally sequential tasks are reduced in

normal order.
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3.4.3 The Rediflow machine

The Rediflow architecture [KEL84, KEL86] has been presented as a follow-up of the AMPS
machine. The main improvement is the merging of reduction and data-flow, which explains the
name of the architecture. The ideas behind Rediflow can be viewed as an optimization in the
implementation of reduction by exploiting the behaviour of streams. Programs based on
communicating sequential processes do not run well on architectures exploiting coarse grain
strict argument parallelism, like the AMPS (see chapter 7). In a functional language processes
are modeled as tail-recursive functions, consuming and producing streams. If this kind of
behaviour is recognized by the implementation of the reduction model, efficient imperative code
can be generated for the processes. The Rediflow architecture was the first reduction machine
proposal in which (stream-based) functions are compiled to imperative code. The issue of

implementing communicating sequential processes on our architecture is treated in chapter 7.

An other difference with the AMPS architecture is that it is recognized that a physical tree
topology is not desirable for mapping the process tree generated by strict argument parallelism.
The Rediflow architecture proposes an XPUTER as the only processing element, incorporating
a FGL-processor, a memory and a packet switch. Several topologies may be realized with such
an element (N-cube shuffle exchange, grid). The ideas are similar to the architecture of the
Transputer [WHISS].

The loadbalancing algorithm has been adapted to a non-tree topology. Still a diffusion
scheduling algorithm is used, but loadbalancing information is exchanged between all
neighbouring processors. The algorithm computes for each processor a "pressure", derived

from the internal load and the pressures of surrounding processors.

Task migration is initiated when a significant pressure difference is detected. The production of
parallel tasks is modulated by alternating between a FIFO- and a LIFO task evaluation. This
idea was first proposed by Sleep in the ZAPP architecture.

3.4.4 The ZAPP architecture

The ZAPP (Zero Assignment Parallel Processor) architecture [BUR81, MCBS87] is similar to
Rediflow with respect to the processing elements and the loadbalancing strategy. The
communication switch between processing elements is only required to have a "strong
connectivity". In contrast to what is suggested in an earlier paper [BURS1], it is clearly stated
in [MCB&87] that no global address space is supported.

Parallelism is generated by the use of paradigms, which may be considered as patterns in
algorithms. An example is the divide-and-conquer paradigm, which is the only one currently
used in ZAPP. This method is similar to the the approach to parallelism in our architecture. The
similarity extends to the way in which a program is distributed over the processing elements

and the way in which expressions are copied. The program is initially broadcast to all
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processing elements, and function applications contained in the divide-and-conquer paradigm

are copied to remote processors for parallel evaluation.

The loadbalancing scheme of ZAPP uses the "single-stealing" rule. This rule allows a relatively
empty processor to steal reduction tasks from neighbouring processors. However, a stolen task
can not be migrated again. This guarantees that the distance between parent and child tasks is at

most one communication link. In Rediflow tasks can migrate over an unspecified distance.

As in Rediflow the evaluation order of tasks in a processing element switches between LIFO
(breadth first) to FIFO (depth first), depending on the load of the processor. The number of
tasks grows linearly with the depth of the process tree during depth-first evaluation, whereas it

grows exponentially during breadth-first evaluation.

No reduction model is yet specified in the ZAPP proposal. Consequently no decisions have
been made with respect to program representation, reduction mechanism and garbage
collection. The application programs used in the reported experiment [MCB87] are entirely

programmed in OCCAM (in a functional style).
3.4.5 The Alice and Flagship machines

Fine grain parallel graph reduction is proposed in the Alice architecture [DARS1, EIS87]. The
program is represented as a graph consisting of nodes that are called packets to indicate the
transportable nature of the nodes. A packet in the Alice machine is similar to a node in the
graph rewrite language CLEAN [BRUS87]. It contains a function name and pointers to the
arguments of the function. If a rewrite rule exists for the function and the arguments have the
form required by this rule, the packet can be rewritten as specified by the rule. Such a packet is
called a rewritable packet. The granularity of parallel actions in the Alice architecture is a single
rewrite action. Rewritable packets are stored in a special pool, from which a fixed number of

parallel tasks retrieve packets to be rewritten.

The Flagship design [WAT86, WATS87] is similar to the Alice proposal. Much attention is paid
to the grain-size and communication cost of packet rewrite actions. Packet rewrite rules are
program-derived combinators, translated to efficient imperative code. Before a processor
attempts rewriting a packet, separate concurrent processes take care that all direct descendants
of the packet to be rewritten are copied to the local memory of the processor. If this copying
can be done faster than the rewriting, all processors can effectively reduce at their highest

speed.

The reduction order of both Alice and Flagship is in principle applicative, but with some
difficulty also normal order can be supported: Special packet types are introduced to support
unevaluated and curried applications. The Flagship machine will make use of strictness
information inside rewrite rules to construct data-flow graphs and save the overhead to detect

unevaluated packets on strict argument positions.
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Both Alice and Flagship architectures rely on a task diffusion mechanism that dynamicly moves
reducible sub-graphs between processors in order to keep the load balanced. If such a
mechanism can be efficiently implemented on a local memory architecture using rather fine-

grained rewrite actions, is a question that remains to be answered.

The Flagship proposal mentions weighted reference-counting as the garbage collection
mechanism that will probably be used [WATS86]. Cycles will be recovered by an additional

mark-and-scan sweep from time to time.
3.4.6 The GRIP machine

As opposed to all previous architectures, the GRIP (Graph Reduction In Parallel [PEY87b,
CLAS86]) machine supports a global address space in hardware by using a single shared
connection between the processors in the system. The practical implementation has already
been discussed in 3.2.4. The GRIP machine is intended to exploit medium to coarse grain
parallelism. The architecture is claimed to hold a position in between a tightly- and loosely
coupled system. In the design this is reflected by the packet-switched operation of the shared
bus connection. Operations on this bus have a coarser granularity than single word at the time

accesses. On the other hand the granularity is smaller than complete graph rewrite actions.

The reduction mechanism is based on compiled graph-rewrite rules. A mark-and-scan garbage
collection mechanism is used. Reduction is stopped in each processor to execute the marking

phase. Scanning is performed concurrently with reduction.

Strict functions give rise to new reduction tasks. Information about the strictness of functions
and applications is supposed to be present in the graph. Strictness analysis and user annotation
are mentioned as possibilites to derive this information [CLA86]. Reduction processes "spark"
new tasks when strictness tags are encountered during unwinding or rewinding the spine of

function applications.

It remains unclear if the grain size of these tasks is controlled. Because only strictness is
mentioned as a criterion to spark tasks it can be assumed that task granularity will be fine. It is
suggested that the synchronisation of tasks is implemented as basic operations of the specialised

memory processors (see section 3.2.3).

The amount of parallelism is managed by changing the evaluation order in the distributed task
pool between FIFO and LIFO like in the previous architectures. An additional "resumed-first"
strategy is mentioned which gives priority to recently unblocked tasks over new tasks that have

not been active yet.
3.4.7 The APERM machine

The parallel reduction model that we use in our architecture (the Amsterdam Parallel
Experimental Reduction Machine) is based on a combination of graph- and string reduction.

Within each of the local storage spaces pure graph reduction is performed. However, when
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subgraphs are detected that represent coarse grain computations, they may be copied to a
remote storage space to benefit from parallel evaluation. This copying is a kind of string
reduction, but a special reduction strategy avoids duplication of work in these cases. This
reduction mechanism is a unique feature of APERM.

Locality in space is enforced by copying subgraphs to a separate remote storage space.
Reduction of the copied subgraph can be completed without reference to the original graph. In
particular, garbage can be collected locally without interference with the other reduction

processcs.

In APERM the transport of subgraphs occurs without synchronization to the reduction
processes and after reservation of sufficient contiguous storage space at the destination. This
yields definite advantages with respect to communication speed, as discussed in chapter 8. To
implement this kind of graph transport a copying garbage collection scheme is mandatory.
None of the other reduction machine proposals consider unsynchronized communication
support for graphs. Flagship, Alice and GRIP base their data-communication on much finer
grain units than a subgraph. The ZAPP architecture has not yet implemented graph reduction

and consequently specialized graph-communication has not been considered.

Parallelism in APERM is generated by annotated strict functions. The annotations are inserted
into the source text by the programmer. The granularity and the amount of parallel
computations is controlled by a threshold mechanism at the source text level of the application
program. The mechanism is incorporated in the application by means of program
transformations (see chapter 5).

The only reduction machine based on a similar approach (i.e. annotated parallelism) is ZAPP.
However, the grain size of computations is not restricted to a minimum and the amount of

parallelism is supposed to be managed by the run-time system (the FIFO/FIFO strategy).

In APERM loadbalancing is performed by a centralized process. Based on run-time acquired
knowledge of the structure of application programs (the execution profile), this loadbalancing
algorithm may obtain better results than the diffusion schemes employed in all other reduction
architectures reviewed in this section. In addition the loadbalancing algorithm achieves a
considerable optimization of the communication cost by exploiting the partly overlapped
address spaces of APERM.
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frame- Program | Reduction Garbage
work represen- | mechanism collection
properties | tation
MAGO | nested string reduction of asynchronous shift
delimited | fixed set of operations between the
strings combinators leave-processors
AMPS graph graph rewriting of a fixed set of not specified
primitive functions
Rediflow | not graph rewriting of a fixed set of not specified
specified | primitive functions, stream-based
user-defined functions compiled to
imperative machine code.
ZAPP graph not specified not specified
Flagship | graph graph rewriting of user-derived reference counting.
combinators, compiled to Cycles recovered by
imperative machine code. additional mark-and-scan
GRIP graph graph rewriting of user-derived mark-and-scan. Scanning is
combinators, compiled to performed concurrently with
imperative machine code. reduction
APERM | locally locally graph rewriting, globally a copying garbage collection.
graph & | kind of string reduction. Graph No synchronization of
globally | rewriting of user-derived reduction processes required
tree combinators, compiled to imperative
machine code
frame- Abstract PMS Performance Application programs
work machine model | architecture | evaluation method | used
properties
MAGO | Collection of | Tree of simulation 7?
active strings processors
AMPS figure 2 Tree of not specified not specified
processors
Rediflow | figure 2 figure 3b simulation not specified
ZAPP figure 5 figure 3b measurements on small to medium
transputer hardware | sized programs
Flagship | figure 2 figure 3a prototype being not specified
constructed
GRIP figure 6 figure 7 prototype being not specified
constructed
APERM | figure 8 figure 9 hybrid simulation small to medium
on prototype sized programs
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frame- Reduction Grain size | Locality Loadbalancing

work Strategy:

properties

MAGO | applicative fine grain not exploited | no load-balancing
order, machine
innermost instructions
parallel

AMPS normal order application | supposed to be| task diffusion, by a pressure
reduction, strict| user-defined| maintained by | algorithm
argument function. task diffusion
parallelism (fine-coarse | algorithm

grain)

Rediflow | normal order application | supposed to be| task diffusion, by a pressure
reduction, strict| user-defined| maintained by | algorithm. The amount of
argument function task diffusion | parallelism is controlled by
parallelism (fine-coarse | algorithm alternating between a LIFO-

grain) and FIFO task evaluation order

ZAPP sequential indicated by | maintained by | task diffusion, by "single-
strategy not the the "single- stealing" rule. The amount of
specified, strict | programmer| stealing" rule | parallelism is controlled by
argument (coarse alternating between a LIFO-
parallelism of | grain) and FIFO task evaluation
annotated order.
functions

Flagship | applicative packet maintained by | task diffusion mechanism
order, but rewrite task diffusion
normal order is | operations. | and caching
also possible (fine grain) | remote parts of

the graph

GRIP normal order, | application | not specified, | not specified. The amount of
strict argument | of user- perhaps not parallelism is controlled by
parallelism derived exploited alternating between a LIFO- and

combinator FIFO task evaluation order. Also|
(fine-coarse "resumed first" strategy
grain)

APERM | normal order, | annotated | enforced by central process controls loadba-
strict argument | coarse grain| copying lancmg with heuristics based on
parallelism of | expressions | annotated execution profile. The amount of]
annotated coarse grain parallelism is controlled by a
functions expressions threshold mechanism

Figure 10: A comparison of several reduction machines referring to the framework of

section 3.3.
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3.5  Dual ported modules in a bus oriented architecture

The prototype of APERM has been constructed from commercial available processor- and
memory boards. Each processor board is equipped with a reasonable amount of local memory,
whereas off-board memory can be accessed via a bus interface. The particular boards that we
use are equipped with two separate bus interfaces (VME and VMX), which implies that we
have dual ported processors (DPP) and dual ported memories (DPM). For processor boards
the available off-board address space is divided in two parts where each part will access a
different bus. Memory boards can be accessed via both ports simultaneously. To assure mutual

exclusion of simultaneous operations a DPM contains an asynchronous arbiter.

The architecture of APERM uses DPM's to implement fast communication links between
adjacent processors. In chapter 4, two advantages of such an architecture are pointed out. The
first practical advantage is that two-points arbitration in DPM's is faster than multi-point
arbitration on a bus. The second advantage is that DPM's provide a shared memory between

two processors, which offers opportunities to minimize communication cost.

In this section we show in addition to these advantages that a bus oriented architecture based
on DPM's and DPP's can achieve a double performance compared to a similar architecture

using single ported modules.

In practical bus oriented architectures each processor module has a restricted amount of fast
local memory (on-board) at its disposal. For fundamental reasons, the access time to this local
memory is (much) shorter than the access time to the large off-board memory. When software
is implemented on such an architecture the highest speed will be obtained when those parts of
data and code that are most frequently accessed, are loaded into the local memory. For an
implementation of graph reduction optimal results are obtained when only the graph is stored
off-board, whereas the code of the reducer and the various stacks are kept in the on-board

memory.

Under these conditions it can be shown that a large fraction of all memory cycles will refer to
the local memory [HARS89]. On the one hand, all instruction fetches and stack references will
access the local memory. On the other hand, the optimization techniques used in the
compilation of reduction, will use local stack-evaluation in favour of graph reduction whenever

possible.

As a consequence of this situation, the off-board memory bandwidth is under-utilized when
only a single processor is performing graph reduction. More reduction processors can be added
to the same bus, until either the bus or the memory is saturated. This situation is illustrated in
figure 11a. The off-board memory space is constituted by three storage modules, while three

reduction processors are connected to these memories by a single bus.
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To demonstrate the performance gain of a factor of two by exploiting DPM's and DPP's we
make three simplifying assumptions (A1-A3). In the example it is assumed that the three
reduction processors saturate the off-board memory bandwidth (A1l). Bus speed and bus-
arbitration overhead are neglected. Thus off-board memory bandwidth is considered to be the
only limiting factor (A2).

2 L) T Oy
I

%
%

N

Network

~~

figure 11a figure 11b figure 11c
Figure 11: Configurations with dual ported memories.

In figure 11a, the cluster of reduction processors is connected to other clusters by a network.
The precise implementation of this network is left unspecified except for the the presence of a
communication processor. We assume that this processor continuously transports subgraphs
between clusters at a speed that saturates the off-board memory bandwidth (A3). In our job-
based reduction model (chapter 5) such a processor is feasible (see chapter 8). Now it becomes
clear that the performance of graph reduction drops by a factor of two, when both the

reduction processors and the communication processors saturate the memory bandwidth.

Figure 11b presents a configuration where both reduction and communication can operate
simultaneously at full speed. The memory modules are provided with a second port and a
separate bus connects them to the reduction processors. The dual ported memories of figure
11b have the same bandwidth as the single port memories of figure 11a (the two ports are
served by time-multiplexing the accesses from both sides). Consequently one memory module
can only serve one bus at full speed. However, when reduction processors and communication
processor access different modules, they may operate simultaneously at full speed. To make
sure that such a situation frequently arises, the storage allocation algorithm can take care of the
even distribution of graph nodes across the available memory modules. In the architecture of

figure 11b the combination of interleaved memory modules and dual ported time-multiplexed
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access provide a twofold performance improvement over the conventional architecture of

figure 11a.

Still another improvement can be achieved if the communication processor of figure 11b is
replaced by reduction processors as shown in figure 11c. These processors can be programmed
to perform both reduction and sub-graph communication. When the communication need in the
whole system is not capable to saturate the off-board memory bandwidth, some of the
communication processors may be switched to perform reduction tasks. This is not possible in
figure 11b, and consequently a twofold performance increase with respect to figure 11a can
now be maintained even when communication traffic drops to zero. Under these circumstances

the architectures of figure 11a and 11b would have the same performance.

From the symmetry of the architecture of figure 11c, one can observe that all processors may
be used for either reduction or communication. Moreover, if we impose certain restrictions on
the communication network, each processor is capable to perform reduction in two clusters.
This is because in figure 11c all processors are equipped with two ports, one into the own
cluster and one connected to the network. When the latter connections are directly tied to
DPM's in other clusters, each processor can perform reduction in two address spaces
corresponding to both its ports. These restrictions turn the network into a store-and-forward
network, which would be no disadvantage in the context of extensible architectures. The future
architecture of APERM as discussed in chapter 4, corresponds to the structure of figure 11c. In
the same chapter the advantages of this structure concerning the optimization of

communication are outlined.
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abstract

Design considerations of a coarse grain parallel architecture for functional languages are
presented. These include extensibility, the separation of computation and control of parallelism,
the introduction of partially shared memories, a cluster concept and a conceptually centralised
loadbalancing mechanism. The implementation of parallel reduction is based on annotation of
coarse grain strict arguments. Speed-up figures for a number of application programs are
obtained by measurements on a pilot implementation of the architecture. The experience
obtained with the experimental machine suggests the use of VLSI for specialised parts of the

implementation. The proposed design is compared with related architectures.

1. Introduction

Within the context of the Dutch Parallel Reduction Machine Project [BAR87] an experimental
machine architecture has been developed, to gain experience with a number of architectural
concepts, which are well suited for the implementation of functional languages. Because of the
lack of side effects in these languages, it is possible to annotate independent coarse grain
subexpressions, and subsequently distribute these expressions as parallel tasks over a machine.
We discuss the implementation of parallel reduction on our architecture, which is referred to as
APERM, the Amsterdam Parallel Experimental Reduction Machine.

Functional languages are interesting candidates for programming parallel machine architectures.
For example, functional programs can be converted by the technique of lambda lifting [JOHS85]

into a collection of (super) combinators. These (super) combinators form a sound basis for
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parallel computation [HUDS8S5] because they can in principle be evaluated as separate units of

local computation, without the need to access a global environment.

An important aim of the research in parallel computing is the development of extensible
multiprocessor architectures. These architectures have a regular structure such that the number
of processing elements can be increased without the need to change the already existing part of
the machine. Only extensible machines will be able to keep pace with the progress in
semiconductor integration technology. For this reason it was decided that the APERM should

have a regular structure.

One of the consequences of this decision was that locality became a vital issue in the design of
both hard -and software components of the machine. In hardware locality constraints the design
of the storage -and communication system. In software the granularity of processes dominates
the development of the reduction model and the application programs. Both aspects of locality
have been the focus of our research effort that resulted in APERM. To support this research it
was decided to build a prototype reduction machine with commercial available processing
components, that could provide us with sufficient measurement data concerning locality. In a
second phase of the project we intend to optimise the machine by incorporating special
components for reduction-specific tasks.

2. Separation of reduction and parallelism

A program written in a functional language is first translated into a set of rewrite rules (e.g.
supercombinators) and a main expression. The main expression is then repeatedly rewritten,
according to the given rules, until no more rewriting is possible. This result is called normal

form and the process of rewriting is called reduction.

There are two different approaches to implement reduction on a parallel architecture. The first
possibility is to have one global parallel reducer. This reducer keeps track of all rewritable
subexpressions (R's in figure 1), and schedules the rewriting of these expressions on the
available processors. Consequently this reducer has to know about both parallelism and
reduction. The second possibility (see figure 2) is to have an orchestra of sequential reducers
directed by a separate conductor, where the reducers have no knowledge about parallelism and
the conductor has no knowledge of reduction. Communication between conductor and reducer
is restricted to the exchange of reducible expressions and their normal forms. We considered
the second possibility more promising to realise an extensible architecture by the exploitation of
locality. It has the advantage that the orchestra of sequential reducers forms a collection of
local computations of coarse granularity. On the contrary, the first possibility is based on

parallel scheduling of single rewrite actions, which might turn out to have too fine a granularity.
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R = rewritable
expression
Figure 1: parallel reducer Figure 2: orchestra of sequential reducers

The choice to separate the control of parallelism and reduction also appeared to be fruitful in
another area. During the progress of the project, major improvements have been achieved in the
way that sequential reduction is implemented. Compilation techniques have been established for
functional languages [JOH84, FAI87], which produce very efficient sequential machine code
and allow functional programs to compete with and even surpass imperative languages. Our
machine can benefit from these achievements in sequential reduction, because the research in

reduction and parallelism is separated.

2.1 Abstract machine model

Separation of reduction and parallelism not only gives the possibility to study both problems
independently it also leads in a natural way to a model for our reduction machine. In this model
the reduction tasks are performed by a pool of reducer processes, which evaluate coarse-grain
entities representing the functional program. How these entities are generated is discussed in

section 2.2.

The problem of controlling the granularity of parallelism is solved in our model at the level of
the application program. By a program transformation conditional statements are inserted that
compare the grain-size of parallel tasks with a fixed threshold parameter. The application
programmer has to provide a measure for the grain-size of parallel tasks, e.g. the size of a data-
structure. When the grain-size of parallel tasks drops below the threshold they are evaluated

sequentially.

The distribution of parallelism is controlled by a conceptually centralised process that we call
the conductor. It allocates pieces of work to different reducers and tries to balance the load of

processors by monitoring the usage of storage- and process resources in the system.

2.2 Parallel reduction model

Normal order graph reduction is the basis of our reduction model. The graph representation of

a functional program, allows common subexpressions that arise during reduction to be shared.
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As a consequence shared subexpressions are only evaluated once. This is an important
optimisation compared to string reduction, where duplication of reducible expressions also

means duplication of work.

The graph representation of functional programs needs a single global address space. Therefore
most parallel reduction machines feature a globally addressable storage space [PEYS87,
WATS87]. When a global address space is implemented on top of an architecture with
distributed storage, memory can no longer be accessed in constant time. The access costs
depend on the size of the machine and can amount to a considerable overhead. In the
implementation of the reduction model on APERM we have chosen only to support locally
addressable memory spaces. Therefore we have to provide an explicit way to distribute parts of

the graph structure across the local memories.
2.2.1 Job based parallel reduction

The pieces of work controlled by the conductor are coarse grain subexpressions, that we call
jobs. In the machine these subexpressions are represented by graphs, so at the implementation
level a job is a subgraph . No attempt has been made yet in the project to develop heuristic
methods to detect such jobs at compile-time, but we will consider this possibility in the future.
At present the programmer has to annotate those subexpressions that represent a sufficient
amount of computation to be treated as a job by the conductor. These annotations do not
change the meaning of the program, but merely cause the reducer to inform the conductor
about the presence of a potential job. The conductor, on its turn makes the decision if parallel

reduction is possible and if so, takes care that the job is transmitted.

The idea is that jobs are completely copied to a remote processor when their evaluation is
needed. The property of graph reduction to share subexpressions can thus not be maintained on
the job level. Within jobs pure graph reduction is performed, but when parallel evaluation is

performed shared subexpressions are unshared by copying them to the remote processor.

Summarizing, our parallel reduction model employs a kind of string reduction on the global job

level and graph reduction within jobs.
2.2.2 Sandwich reduction strategy

To avoid the major disadvantage of copying (duplication of work), a special reduction strategy
has been devised on the job level [VRES8]. This strategy guarantees that a job will only contain
one reducible expression, starting at the top node of the job graph. We call this reducible
expression the primary redex of the job. When the job is transported to another processor, it is
guaranteed that there are no other (secondary) redexes . Thus, when copying takes place, no

work can be duplicated.

In practice the sandwich strategy has been implemented by a special function to be used by the

programmer to annotate parallel jobs:
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sandwich G jobq jobs . . . jobp
where job; = Fj aj1 aj2 . . . aim

The sandwich construct is the only means in the language to create jobs. An expression is
sequentially reduced in normal order until a sandwich expression is needed. The reduction of G
jobj jobs ... job, is then suspended until the parallel evaluations of job; job, . . . job, have
been completed. However, before the jobs are dispatched for parallel evaluation, all arguments
aj; ajs . . . ajy of each job; are sequentially reduced to normal form, because subexpressions
shared between the a;; may contain redexes. After normalisation of the a;; only normal forms
are shared. Now copying the normal forms of the a;;, in order to ship the jobs, cannot result in

extra work'. Similarly we require that the F; do not contain reducible expressions.

The strategy has been called "sandwich strategy" because it contains one level of applicative
evaluation between two levels of normal order evaluation. We have embedded the sandwich
function in SASL [HARSS].

Care should be taken to avoid non-termination of the program when sandwich functions are
inserted. The programmer has to ensure that all arguments a;; represent terminating
computations. The sandwich strategy cannot directly exploit "pipe-line" parallelism, where a
chain of processes transform a list of input values while each process only operates on one
element of the list at a time. However, it is possible to transform a large class of programs
based on pipe-line parallelism into versions that can be annotated with the sandwich function.
We have called this transformation communication lifting [VRE89]. The tidal model discussed
in section 4.1 is an example of a program that was originally expressed as a set of processes
interconnected by streams (lists with pipe-line behaviour) and that has been transformed by

communication lifting into a version that runs efficiently on our job-based reduction model.

2.3 Control of Parallelism

Jobs generated by sandwich annotations exhibit a strict hierarchical structure. A job executing a
sandwich application becomes a parent task that spawns a number of independent child tasks.
There will be no communication between the child tasks, because jobs are self contained. The
only communication that takes place is the transfer of the child tasks to possibly remote

reducers, and the returning of the results to the parent.

The hierarchical task structure avoids problems associated with global garbage collection
[HARSS8] and gives rise to interesting possibilities for loadbalancing strategies. We have
investigated a conceptually centralised algorithm (the conductor) that uses certain heuristics to

find a near optimal schedule. The heuristics of this loadbalancing strategy is based on the

I provided that for all jobs in a sandwich expression: job; # Jobj when i #J.
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assumption that there exists a dependency between the size of the arguments in a job expression
and the amount of work represented by the job.

A second task of the conductor is to use the knowledge about the concrete architecture, in our
case the presence of overlapping storage spaces (see 3.2), to minimise the communication

costs.
3. The architecture of APERM

3.1 Locality in the memory subsystem

The choice for a regular structure in the architecture necessitates the distribution of storage
elements in the design of the parallel reduction machine. However, one does not have
completely to abandon the idea of having shared memory. A processor that is reducing a job
has to access three types of data-areas, containing respectively the reducer-code, the stacks and
the heap. Only the heap-memory contains the reducible expressions and is as a consequence the
only part of the storage system that will be involved in the distribution of jobs. An important
parameter of a reduction system is the fraction time that a reducer spends in accessing the heap.
Measurements on the prototype of APERM have shown that this fraction is only 10%
[HARS86]. This means that a shared bus to which the heap-memory is connected will saturate
when about 10 processors are simultaneously reducing jobs in the heap-memory. As a
consequence an architecture could be based on clusters of about 10 reducers interconnected by
a shared bus.

3.2 Communication

In a cluster based concept the inter-cluster communication is of vital importance. If no reducer
is active, the highest possible datacommunication performance between adjacent reducer
clusters is of the same order as the heap memory bandwidth. This speed could be achieved by

coupling two cluster busses with a special processor dedicated to the copying of jobs (e.g.

DMA-unit, see figure 3).
w QOO [

........ DMA

Figure 3: Bus interconnection by DMA

Such a processor acquires mastery over both busses and copies a block from one cluster heap

to the other cluster heap. In practice the arbitration protocol on a multi-master bus may cause a
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considerable overhead. This is caused by the generality of the protocol and the fact that a multi-
point arbitration has to be made. Moreover, all processors on both busses are blocked during
the DMA transfer.

OO® ] QOO e

Figure 4: Interconnection by dual ported memory

Another possibility is to equip all memory modules with two busses and fast arbitration logic,
resulting in a dual ported memory. The overhead of the arbitration logic on the memory
modules can be made sufficiently small to be neglected in comparison with the memory cycle
time. This can be achieved because only a two points arbitration has to be made and no general
protocol is needed. Figure 4 shows the interconnection between reducer processors that is used
in APERM and that is based on dual ported memory modules.

An additional advantage of dual-ported memories is the possibility to avoid data-
communication altogether, when a job is allocated to a reducer residing on an adjacent
processor. In such cases the destination processor is able to access the job at its original
position. There is no need to copy the job-graph, because the sandwich strategy guarantees the
job to be a primary redex. This means that all outside references to subgraphs in the job refer to

data (normal forms) and reading data can be done by several parallel reducers without conflicts.

33 The experimental machine

One of the goals in the development of APERM was to be able to adapt to the progress in
VLSI technology. This implies that the machine design had to fulfil the criteria for extensibility,

e.g the possibility to add processing power without generating potential bottle-necks.
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Figure 5: The basic cell

In figure 5 the current prototype of our reduction machine is illustrated. In this prototype one
conductor controls the work of four reducer processors and communicates its control
information via dual ported memories. The reducer processors are also connected via dual
ported memories. These heap-memories are considerably larger than the previous ones because
they contain the graph of the program that has to be reduced. When coarse grain reduction
tasks have to be transported from one reducer to another this is done via network software that
uses the facilities provided by the dual ported memories. In our first prototype a reducer
processor prepares a graph for transport whereas another processor reads it from the dual
ported memory and transports it to the next memory. This implies that in our current situation

the network requires cycles from the reducer processors.

To illustrate the extensibility of the architecture, figure 6 presents a configuration of four basic
cells of our machine design. It consists of two separate layers. One layer contains processors
responsible for the reduction work and the network for the exchange of coarse grain reduction
tasks. The other layer contains the conductors and the network over which they can exchange
loadbalancing information. In the example we have assumed a serial connection between the
conductors, because we expect that a limited amount of information will be exchanged between

the conductors.
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................ Serial connection
(conductor network)

—  Parallel bus connection

Figure 6. Four basic cells

The reducers are extensible in a mesh type of structure. The conductors, however, can either be

extended horizontally or hierarchically, dependent on the flow of information between them.

34 Possibilities for VLSI

In section 3.3 it was discussed that in APERM the transport of reducible coarse grain tasks is
done via a communication network that uses dual ported memories. The implementation of the
current solution of the network layer requires cycles from the processors that also execute the
reduction tasks.

This could be avoided if a separate DMA type of processor would be used to do the actual
transport. Such a graph transport module could do much more than a simple DMA transfer. It
could also perform the algorithm that assembles job graphs into network messages [HARSS].
Before transportation the algorithm has to run through all the pieces of a graph that are
scattered over the whole memory and map them into a block of consecutive memory addresses.
As this work is also a prerequisite for the garbage collection algorithm that has to operate on
the heap memories the graph transport and garbage collection algorithms can be combined to
execute in the same processor. A combined graph compaction- and garbage collection

processor is our first candidate for VLSI implementation.

4. Performance Measurements

To obtain an impression of the possible performance gain of the job-based reduction model, we
have made a partial implementation of the model on our machine architecture. In this partial
implementation only one reducer process is active on each processor and communication is
only allowed between adjacent processors. With such an experimental set-up transport costs of

job graphs can be measured on a point to point basis. The measurements comprise the number
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of graph-nodes that have been transported for each job and result, the number of reduction
steps performed by each job and the actual transmission times of jobs and results. The data
obtained are used as parameters in an off-line performance evaluation model of APERM. In this
model it is possible to experiment with several loadbalancing strategies and communication

optimisations.

In our method to evaluate the performance functional programs on a parallel architecture, we
use a mixture of real measurements (communication time, reduction steps) and modeled
calculations (loadbalancing, mapping of reduction steps to run-time). We think that this
method, which we call hybrid simulation, produces accurate performance predictions without
incurring the high cost of a full implementation. Only those parts of the architecture are
implemented whose simulation would otherwise require an excessive amount of computation

time and thus would prohibit a realistic evaluation based on large application programs.

4.1 Results on possible speed-up

A number of application programs has been written in SASL [TUR79], ranging from the fast
Fourier transform to a tidal model of the North Sea [VRE87]. Some of the information
resulting from a run of an application program on the experimental set-up can be presented as a
job graph. In figure 9 such a graph is shown for the Wang-algorithm [WANSI1], which
eliminates a tri-diagonal set of linear equations. The program contains a cascaded sandwich
construct, spawning twice a set of five jobs. In figure 9 the horizontal axis represents execution
time, expressed in reduction steps. The horizontal solid lines represent the time that a processor
is active reducing a job (bold numbers), whereas the horizontal dotted lines indicate the idle
time of a processor. Vertical lines represent the number of nodes that are involved in the

transfer of jobs or results (italic numbers).
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Figure 9: execution profile of the Wang-algorithm on a five processor system
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If the architecture provides five or more processors, the job-graph corresponds to an actual
execution profile. Otherwise the conductor algorithm has to schedule the jobs on the available

Processors.

A program that evaluates several variants of the central loadbalancing algorithm is being
developed [HOF88]. This analysis program uses the measured point-to-point communication
performance and minimises transport cost by exploiting the partly overlapping address spaces
of APERM (see next section). Preliminary results indicate that on the fly scheduling heuristics
approaches the best possible schedules very closely (within 10%) for all our application runs.
However, this centralised heuristic loadbalancing algorithm, only performs slightly better than a
simple diffusion scheme.

In section 2.1 we explained that a grain size measure for parallel jobs has to be provided by the
application programmer. This grain size measure is compared against a threshold value to
decide if a job is still worth being reduced on a remote processor. All our original application

programs had to be transformed to provide this grain size measure [ VRESS].

Figure 10 shows an example of speed-up figures obtained for a program that calculates the fast
Fourier transform of a list of complex numbers. The results are based on optimum schedules,
found by exhaustive search through all possibilities with a branch-and-bound algorithm. The
calculation of the schedules uses data measured on the experimental machine, like the
communication costs for transmitting jobs and results. Garbage collection overhead has not
been accounted for (in fact no garbage collection was needed to run a 512-point fast Fourier
transform on the experimental machine). In the vertical direction speed-up is plotted against a
range of threshold values on the horizontal axis (see figure 10). Each threshold value represents
the minimum grain size for parallel jobs in a particular run of the application program. In this
example the length of the data list to be transformed is taken as measure for the grain size of
jobs. Consequently the threshold value is the minimum length of the data-list required for a job
to be executed in parallel.

All speed-up values are calculated with respect to the untransformed sequential version of the
program. The fast Fourier transform has been applied to a list of 512 complex numbers. Several

speed-up curves have been drawn, each for a different number of available processors.

Going from left to right in figure 10, the number of jobs increases because of a decreasing grain
size. As long as processors are under-utilised speed-up improves. However, when too many
jobs are generated, speed-up deteriorates because of communication costs. From the figures an
optimum threshold value can be determined for each number of processors. For instance in
figure 10 the optimum threshold value for a 4 processor system (np=4) is 128. The speed-up of
the 512-point Fourier transform is slightly more than 3 in this case.
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Figure 10: speed-up curves for the fast Fourier transform
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Figure 11: speed-up curves for the quicksort program
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Figure 12: speed-up curves for the schedule program
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Similar illustrations (figures 11 and 12) are shown for the quick-sort algorithm and for a
parallel version of the branch-and-bound algorithm that we used to calculate the optimum
schedules. The threshold value for quick-sort is again the length of the list, but the schedule
program uses the depth of the search tree to control the grain size. The input of quicksort is a
list of 1024 values obtained by applying the sine function to the numbers 1 to 1024. The

schedule program is given a list containing the execution profile of seven hypothetical jobs.

Figure 13 shows the execution profile of the tidal model of the North Sea on a two processor
system. Due to the small communication overhead of this program a speed-up of 1.7 is
obtained. When the size of the grid in the simulation is n, the amount of computation in the

parallel jobs grows with O(n? ), whereas the communication cost only grows with O(n).
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Figure 13: execution profile of the tidal model on a two processor system

4.2  Results on optimising communication

An important aspect of the centralised loadbalancing algorithm is that it tries to minimise the
amount of datacommunication. The concrete architecture of APERM (see chapter 4) offers the
opportunity to exploit the presence of dual ported heap memories between the reducer
processors. The dual ported memories offer a shared memory space between each pair of
reducer processors. Preliminary simulation results show that about one third of all jobs that
have to be evaluated by a remote reducer need not be copied, because the remote reducer runs
in a neighbouring processor and is thus able to access the shared heap space by second port of
the memory [HOF&8].
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For a two processor system the savings are 100%, because both processors are connected to
one dual ported memory, and communication is never needed. When the number of processors
increases, the economies due to the dual ported memories become less important. This is
intuitively clear, because more communication is needed to spread all jobs evenly over the
available processors. However, on a sixteen processor system (figure 6), still 33% of the jobs
that have to be reduced by a remote processor can avoid communication. We think that these
savings together with the large communication bandwidth offered by dual ported memories,
justifies the particular architecture of APERM.

5. Comparison and discussion of results
The architecture of APERM differs from a number of related proposals and projects:

- Data communication is based on the use of dual ported memories. Two high-speed parallel
busses on the memory modules realise the highest possible datacommunication bandwidth
between neighbouring processors. To our knowledge, the only proposal that has some
similarity to ours is the Bath concurrent Lisp machine [MARS83], where processors are
interconnected by dual ported memories. These memories, however, do not contain the heap

storage but merely serve as communication buffers.

Experience shows that in real systems datacommunication represents a major bottle-neck. Most
recent and current proposals do not pay enough attention to the implementation of
datacommunication. This is due to the fact that often architectures are simulated. If reasonably
sized application programmes have to be executed on a machine, the simulation of
datacommunication behaviour appears to be practically impossible, because of the amount of
computation involved. Therefore, we have developed the method of hybrid simulation (see

section 4), which allows us to obtain realistic results based on large application programs.

- The architecture is based on partly overlapping local address spaces provided by the dual
ported memories. Both the use of shared busses and dual ported memories enable important
optimisations in the transportation of jobs. When a reducer dispatches a job for parallel
execution to one of the neighbouring processors, no data communication is needed when the
job resides in the overlapping address space. We have shown that in this way a considerable

reduction in communication costs can be obtained by the conductor.

- APERM does not support a global address space. This implies that if a job lies outside the
local address space of the reducer to which it has been allocated, it has to be copied to this
local address space. In case an expression in the functional program is shared by a number of
jobs, the copying of this expression can be done without the duplication of work. This requires
a special reduction strategy. Many proposals that are based on a local memory architecture still
do support a global address space [WATS87, HUD8S, KEL84,86]. In our opinion this might
introduce overhead that is difficult to control.
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- The loadbalancing decisions are made by a logically centralised conductor. The conductor
possesses global knowledge of the resource usage in the system and of the grain size of jobs.
The loadbalancing algorithm will take advantage of this knowledge to achieve a near optimal
distribution of jobs. According to our knowledge all of the recent and current proposals for
parallel reduction machines use some form of diffusion scheduling [BUR81, MCBS7,
KEL84,86]. Preliminary results indicate that our loadbalancing method performs slightly better
than diffusion scheduling. Wether this advantage remains for a distributed implementation of

the conductor will be a subject for future research.
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Abstract

A proposal is made to base parallgbleation of functional programs on graph reduction combined
with a form of string reduction thaveids duplication of work. Pure graph reduction poses some rather
difficult problems to implement on a parallel reduction machine, but with certain restrictions, parallel
evduation becomes feasible. The restrictions manifest theeséivthe class of application programs
that may benefit from a speedup due to paraliglation. wo transformations are required to obtain a
suitable version of such programs for the class of architectures considered. It isabbadkat pro-
gramming tools can be ddoped to assist the programmer in applying the transformations, butvere ha
not investigated such possibilities.oTdemonstrate the viability of the method we present four applica-
tion programs with a comptéy ranging from quick sort to a simulation of the tidaiwas in the North

sea.

Key words: dvide-and-conquer parallel algorithms parafjedph reduction
reduction strafgy program annotation program transformation ljfilng

1. Introduction

Several parallel architectures % keen proposed to support the reduction model of computa-
tion. These are based on either string redutti®r® 4or on graph reductiop.%: 7 8 9, 10, 11,

121t is often claimed, that for most application programs, graph reduction is niisiengf
than string reduction. This is due to tletf that computational work may be shared; upon
completion of the wrk, the result may be used by all interested parties. In this part of our

T This work is supported by the Dutch Ministry of Science and Education, dienst Wetenschapsbeleid
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paper a mixed reduction model based on normal onBmagion is proposed, which shares
some of the advantages of both string and graph reduction.

1.1. Astorage hierarchy

In graph reduction, a program beingeeuted is represented as a connected graph. Therefore,
the graph must beelpt in a single storage space. Such a storage space can be implemented in a
distributed fashion. Inorder not to reduce the advantages of sharing, the more frequently non-
local accesses ocguthe more efficiently themust be performed. In its full generalitis

brings about some difficult problems, in particular in the area of garbage colfettion.

Our basic model of a distuibed architecture is that of a communication network, with pro-
cessing elements at the nodes. Each processing element hagiés gtare. In most imple-
mentations of such architectures, the layevfcan access to a non-local store is larger by-se
eral orders of magnitude than that of a local access. TWweast®ss is usually implemented in
software by interprocess communication through a (serial) data-communication netasirk. F
access to the local stores is based on exactly the same principles, but the implementation
details are different. The communication network is usualastdarallel bus and the interpro-
cess communication occurs between hamdwmplemented processes of both the memory and
the processoMe do rot want to dwell on these details but only stress the large difference in
speed between local and global access. An implementation shouldvéedkg® this fact by
introducing a distinct category of access privesifor global respectely local access.

The purpose of parallel reduction is to speed up computation with respect to sequential reduc-
tion. This is achieed by deering the ealuation process in such aay that reducible xpres-

sions appeamwhich are suitable forvaluation by separate processing elements. The criteria
for the selection of such rexis ae manifold. For example the granularity of the sedend

their storage requirements play a role. The electeckes@e henceforth called jobs.

In our proposal, programs are annotated via the use of a specialverifiniction. This pro-

vides the mechanism by which jobs are announced at run time. Wioikednthe subgraph

that represents a job is isolated from the rest of the graph, and made self contained. The sub-
graph is transferred to the ymie store of the processing element, which v@mgihe task of
normalising the jobUpon completion, the resulting subgraph is geer with the original

graph. The previously mentioned global access priesitae used xclusively to implement

the transfer of jobs and results. The local access presitie used to dereference pointers in
subgraphs, createwaiodes etc.

An important consequence of thigaiation strategy is that application programs must (be
made to) ehibit the right kind of locality in space. Otherwise it is inefficienteleate jobs

in isolation. String reduction provides this locality in a naturay. Wherefore we borm this
property by implanting it in a graph reduction system angghat the disadantages of string
reduction can bevaided.
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Our attention is deoted mainly to the delopment of methods by which applications can be
made to ®hibit locality in space. This has the advantage, that the choice of reduction system
can be separated from issuesolded with parallelism. In our opinion it does not matter
whether a parallel grain is actuallyariated as one reduction step, or as a number of reduction
steps. It is far more important that the grain size, the communication cost and the paarallel o
head are well balanced. Since the proposed method is not dependeytpantianlar reduc-

tion system, we also benefit from the more practicabiathge that our attention is not side-
tracked by n&v devdopments in the area of fast sequential reduction methods. Since our
project was started, three such disgi@s were publishe#f* 15 16

1.2. Applications

Given a particular application, te different methods can be applied to obtain an optimum in
the trade-dfbetween the amount of parallelism and the grain size of parallel computations:

Data partitioning
This technique applies when the grain size of an application is tge &rd can be
reduced to produce more and finer graiDsvide-and-conquer algorithms use this tech-
nique and are the subject of study in the remainder of this.dagqu@r partitioning can be
summarised as:

F (union (a, b))- union ((F a)n parallel with (F b))

Data grouping
The grouping technique may be applied when the grain size is too smah bobindant
amount of parallelism isvailable. Seeral small grains may be combined into oneyéar
grain, as is shown in the following example:
PaMap F (1..10)-» SegMap F (1..5)n parallel with SegMap F (6..10)

Although the example strongly resembles thadd-and-conquer strajg the mecha-
nism is different. The functioRarMapis a parallel version of the sequentiap (apply
to all) function, SeqMap In the example ParMap distributes each function application
(F 1), fori O1..10to a different processowhereasSeqMapperforms five gplications
of F in one “grain”.

Not all applications may benefit from paralleBleation on our systemln particular if the
efficieng/ of a program is based on sharing, which is the case with for instance the Hamming
probleml’ then we accept that it cannot benefit from paraliduation.

In the remainder of the paper we will concentrate on the mechanisms and polaiesdinn
creating and performing “jobs”.
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2. Job creation

A multiprocessor architecture without a global store limits the amount of parallelism in a func-
tional program that can be usefullypéoited, because the communication cost to transport an
expression from one local store to another will often dwarf the gain that is obtained by-the par
allel reduction of that expression. For this reason we kiacided only to allw parallel reduc-

tion of certain gpressions that comply with the notion of a.j@¥e assume, that initially a sin-

gle expression is presented foraleation. There must be a significant amount airkv
involved in this main expression. A job is defined as a reduckpleession with the folling
properties (the so called job conditions):

1. Ajobis aclosed subexpression (i.e. it contains no free variables).
2. It's ormal form is neededt in the main expression.

3. For all concurrent jobs, the communication cost to transport a job must be less than the
sum of the reduction costs of the other jobs.

Only subexpressions that are jobs can be submitted to another processor in order to be reduced
(in parallel to the main expression and other jobs) by a separate reducer process. It is the
responsibility of the programmer to ensure that all job conditions are met. Otherwise parallel
evduation may gen cause performance degradation.

The restriction of parallel reduction to jobs bears the following advantages:

» Data communication can be based on jobs (and their results) as the smallest quantity of
data to be transported. Communicatiorerbead is small compared to communication
cost, since in our proposal not just a single packet is transgoft€biut a complete sub-
graph.

e Since a job is a closed sufpression, it can be reduced in a separate address space. As a
consequence no global garbage collection is needed.

*  The process reducing a job is not disturbed by other reducing processes trying to access
parts of the job, because all other processes also reduce ckpseds®ns. A reducer
only communicates if it needs the result (normal form) of a job submitted by the reducer
itself.

»  The parallel reduction of a set of jobs starting at the same timastes than the sequen-
tial reduction of these jobs, provided that sufficient processorvalabode. The problem
of achieving a near optimal distribution of jobgeothe available processors during run
time has to be solved by an additional load balancing mechanitm.calculation of
optimal schedules is pursued in part Il of this paper.

T A subexpressioM is needed in a comeC[M] if and only if M is reduced to normal form wh&{M]is
reduced to normal form.
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To prove the last point we need to formalise job condition (3). Suppose therejalbe with
communication cost; and reduction coss, i1 .. n, wherec; ands, are measured in the
same time unit. Job condition (3) then becomes:

L] Di < % SkD (1)
i0dL.n |f k=1, ki O
What we want to pnee is that the longest job (communication included) takes less time than
all jobs in sequence (without communication), i.e.:

n
2 S > max Gk +cy) (2)
k=1 k=1

n
From (1) it follows that: [J %i +s5< > skDand therefore (2).
i0L.n k=1 U

The intuitve vasion of job condition (3), namelymg C; <s is not sufficient to proof (2).
] .n

Counter example: tavjobs withc; <s;, €, <s, andcy > s,.

2.1. Sharing

To illustrate the consequences of the job concept for parallel graph reduction we will consider
the graphical representation of expressions and rephrase job condition (1):

1. Therepresentation of a job is a subgraph (i.e. there are no references to nodes external to
the job).

This condition does not allofor two (or more) jobs to share a subgraph. In the illustration of
figure (1) graphsA and B share the subgrapb. Therefore, grapiA does not qualify as a job
because it contains an external pointeCto

Figure 1 : An external pointer

There are seral reasons not to extend the definition of a job to support these external point-
ers:

» Before submitting a job B) al sharing nodes (such &) haveto be discuered and
flagged. This is necessary because otherwise the process trying to reduce a sharing node
(S) would not knav where to find the result@). The discwery of sharing nodes is a
time consuming process because the whole graph has tod&edthand marked.
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*  The amount of work to reduce a shared expression might be small.

»  After the reduction of jolB it is not certain that thexpressionC has also been reduced.
This is the case for example i€ is not needed in xpression B (e.g.
B =if “true” then- - - elseC). So A might hare waited for a result and still kia © do
the work.

Considering these difficulties weveadecided not to support sharing between jobs aneéep k
jobs completely self contained. This implies that sharing may only occur within bnjtie
example of figure (1) it means that before sendwgygob B the subgpressionC is copied,
and both jobsA and B will reduceC.

2.2. Duplication of work

The performancean attained by parallel reduction might well be cancelled by the duplication
of work inherent to ordinary string reduction, as is shown in the illustration of figure (2).

C

-

The jobC is reduced twice, once as part of jaland once as part of jdd. Howeve, snce D

and E are contained i€ and shard=, F is computed twice fo€ and thus four times foA.

The solution is to reducé first, supply its normal form t® andE and then reduc€ etc. A
special parallel reduction strategy has been designed (the “sandwich”-strategyoitisit a
duplication of vork. It is demonstrated with practical examples that divide-and-conquer algo-
rithms can be comrted into sandwich programs.

Figure 2 : Nested sharing

2.3. Thesandwich strategy

In a system that exploits strict operator parallelism, a simple job administration is all that is
necessaryFor example, if some reduction sequence encounters the (EREPLUS xy 2),

the addition can not be performed until all argumentge Haen normalised (in parallel).
Hence there is no need for the job corresponding danaentx to reactvate the addition
before jobsy andz have completed or vice versa.

In contrast to strict operator parallelism, a general parallel reduction strategy wowidcallo
ary subexpression to be treated as a.joblthough more flgible, this has the disadatage
that the administration of jobs is more complex. Suppose, that the generation of parallelism is
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triggered by annotating subexpressions. For the application cited tieoe are seral possi-

ble ways to annotate one or more of the three argumenyscdnpletely normalised gu-

ment will cause the addition to be rewaatied, with the chance that no further progress can be
made because some of the arguments are stibilsale. The sandwich strategy combines the
adwantages of the simple job administration required for strict operator parallelism and the
possibility to annotate arbitrary subexpressions, at the detriment of some flexibility.

A sandwich apression is defined as a needed function applicaGo®r; (X, - - - X,,) with the
following restrictions (the sandwich conditions):

ThefunctionG is strictt in all argument positions.
Eachargumentx; of G is a function applicationH; a;; a;, - - - ay,) where:
Thefunction H; is strict in all its arguments.

Eachexpression b a;; a;, - - - &) satisfies the job conditions.

a M w0 N PRE

Theexpressiondd; ana; are in normal form.
Given a andwich-expression, the sandwich strategy nms as follows:

e Submit all function applicationsH; a;; &, - - - &) as ®parate jobs to be reduced in-par
allel.

*  Wait for the results of all submitted jobs and continue with the normal order reduction of
G, gpplied to the results just reved.

The sandwich strategy ve duplicates work, because when jobs are submitted and/iogp
takes place, all terms in question are in normal fokipdnda;;). Thus only normal forms are
copied and these, by definition, do not contain work. The giyrdtas been named a “sand-
wich” because it consists of one layer of parallel and applecataluation between tw layers
of normal &aluation.

In the framevork of the SASL programming langud@ea rew mimitive function has been
introduced, which implements the sandwich sgwat&éhe general form of a sandwich applica-
tion is:
sandwich G(H; aj;---ag ) - (Hy an - -an )
Apart from parallel ealuation, the expression is egdient to:

G (Hy ajp--agy, ) ~(Hy an--an,)

The sandwichfunction evaluates the applicationd{ a;; - - - &) in parallel. As soon as the
results of theseveluations hae become wailable, normal lazy eduation resumes.

T A function G with arity n is strict in argument positionif for every possible rede R, R is needed in
(G X¢ -+ Xi1 R %u1 -+ Xp).
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Summarising, we propose to perform graph reduction within a job and string reduction with-
out duplication of work on the parallel jolbvé& The sandwich strategy exploits strict operator
parallelism, but allows the programmer to define the operator.

3. Job control

The sandwich strategy provides the means to generateuadaath amount of parallelism,
since jobs may contain sandwich expressions, which creatghs etc.

There are tw points worth noting:

* Since we stwe & obtaining best results with divide-and-conquer problems, it may be
assumed that creating more jobs implies that theiohal jobs become smaller (in terms
of computational work), up to a point where job condition (3) no longer applies.

. For lage problems, an uncontrolled expansion of the population of jobs will eutgro
evan the most powerful architecture.

Some form of “job control” is necessary to ymet the system from being flooded with small
jobs. A good control mechanisnowld not unduly restrain parallelism, because idle process-
ing elements are a waste of resources. In general the control mechanism must e tadapti
the load of the system.

In the architecture proposed here, there is no need for an application independent control
mechanism, since all divide-and-conquer algorithms provide a “handle” for regulating the gen-
eration of jobs. It is sufficient to makhe parallel divide phase conditional to the grain size of
the potential jobs. A consequence of the relation between the amouatkoirmolved in the
individual jobs and their number is, that a mechanism aimed at keeping the graingsze lar
enough will automatically restrain the number of jobs. A threshold on the grain size is neces-
sary and sufficient.

In the nat sections examples arevgn of how the grain size of jobs in dde-and-conquer
problems can be calculated and controlled at souvebM& program transformation. In most
other proposals, this control ixested at a lower heel,10: 19. 20yhich males it harder to
devise good heuristics.

4. Application of the sandwich strategy

As a first example of transforming a divide-and-conquer algorithm into a version suitable for
parallel ealuation we consider the quick sort algorithm. The principle of our transformation
also applies to otherwdde-and-conquer algorithms, as will be shown by a parallel version of
the fast Fourier transform, &kigs dgorithm for solving a sparse system of linear equations
and a hydraulical simulation program.
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4.1. Quicksort

Figure (3) shws the quick sort algorithm in SASIL. Before proceeding we will briefly intro-

duce the aspects of the SASL programming language that we need here. A function definition
in SASL may consist of seral equations. & instance in figure (3) there is one definition of
QuickSort with two dternatves slected by pattern matching on the actual argument. If the
list to be sorted is emptwhich is written as (), the empty list is produced as the answer

the second equation, the formafgament toQuickSortspecifies a patterna(x), which is
matched with the actual argument wh@uickSortis applied to a non-empty list. During the
pattern match the head and the tail of the actual argument are made accessiated as
respectiely. In the WHERE definition something similar happens. The result of the applica-
tion Split ax () () must be a list, the head of which is made accessibteaasl the tail as.

When applied to a non-empty liQuickSortselects the heaalof the list and supplies this ele-
ment as the pot to the functionSplit. The tail x of the input list is split around thevoi in
two aublists m and n. These sublists are subsequently supplied to reeumsvocations of
QuickSort The symbol £+) denotes the infix operator that appends the right Igiraent to
the left one. When {:is used as an operator in an expression it prepends aeaal to a list.

In the Split function a conditional is used to collect the list elements withlaeviower than
the pvot in the accumulating gumentm. The remaining list elements are collected in the sec-
ond accumulating gumentn. The arrev (- ) connecting a condition and a clause should be
read aghen The else clause of the conditionaSplit ay m (b: n).

QuickSort() = ()
QuickSort(a: x) = (QuickSort my + + (a: (QuickSort 1)
WHERE
m: n = Split ax () ()
Splita() mn=m:n
Split a(b:y) mn=b<a - Splitay(b:m)n
Split ay m(b: n)

Figure 3 : Sequential quick sort application

To dbtain a parallel version of a program, subexpressions that camalbated in parallel must
be annotated.dlachieve this we use angular brackets @nd > ), which obg the same syn-
tactic rules as the normal parentheses. An expression between matching angutss [srack
job. Figure (4) shws the version of th@uickSortfunction after annotation with job braets.
The annotation has to be provided by the programmer.
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QuickSort() = ()
QuickSort(a: x) = < QuickSort m ++ (a: < QuickSort )
WHERE
m: n = Split ax () ()

Figure 4 : Quick sort annotated by the programmer with job brackets

A program annotated with job bragtks can be transformed more or less automatically into a

version with sandwichgressions. A formal description of the transformation may be found

in chapter 6. In the remainder of this chapter we will introduce the principles of the transfor
mation by means of a series of examples.

The transformation requires tmaeps. The first step, which we call job lifting, recognises
expressions between job brackets. Job lifting generates an auxiliary fuctioat satisfies
the sandwich conditions. In figure (5) job lifting has replaced the boQuickSortby a sand-
wich expression o6.

QuickSort() = ()
QuickSort(a : x) = sandwich G (QuickSort M (QuickSort
WHERE
GPQ=P++(a: Q)
m:n=Splitax() ()

Figure 5 : The job lifted version of quick sort

If both applications ofQuickSortin figure (5) were to be reduced in parallel, the application
(Split ax () ()) would be copied and reduced twice Plve this problem, we introduce a
variant sandwich of the sandwichprimitive, which normalises all the; (in casum and n)
before jobs are created. This has theatfof normalising the applicationSplit ax () ())
before the creation of the jobs.

For the sandwich strategy to bdegftive, both recursre gplications ofQuickSortin figure (5)
should contain enough work to outweigh their communication cost (job condition 3). This may
be achiged by imposing a lower limit on the length of the listsandn. Figure (6) shows the

final version of th&QuickSortprogram, with controlled application of the sandwich strategy as
obtained by a second transformation step.dl this step the grain size transformation. The
length of the list to be sorted is &akas a measure of the grain size, since the amourtrkf w

is O (length?log length).

The normalisation forced by th@wantsandwich is no longer necessaryhe reason is, that
to determine the lengths of the sublist&ndn, both will have o be rormalised. The compar
isons to theThresholdtherefore sem a dial purpose: controlling the grain size and forcing
normalisation. Although the finakvsion of the quick sort program has a comglgpearance,

it should be noted that most of the code is generateddprtygram transformation steps.
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Threshold= 100

QuickSort() = ()
QuickSort(a : x) = length m> Threshold -
length n> Threshold -
sandwich (QuickSort my (QuickSort n
QuickSort m+ + (a : QuickSorteq n)
length n> Threshold - QuickSorte, m ++ (a : QuickSort N
QuickSorteq m + + (a: QuickSortey n)
WHERE
GPQ=P++(a:Q)
m: n=Split ax () ()

QuickSorteq () = ()
QuickSorteq (a : x) = QuickSorteg m + + (a : QuickSorteq n)
WHERE
m: n = Split ax () ()
Split a() mn=m:n
Splita(b:yymn=b<a - Splitay(b: m)n
Split ay m(b: n)

Figure 6 : Final parallel version of the quick sort program.

The cost imolved in the control mechanism that is introduced by the grain size transformation
has to be weighed against the benefits from paral@uaion. The optimal alue of the
Thresholddepends on properties of the system configuration. Both issues are pursued in part
Il of this paper?

4.2. Thefast Fourier transform

The fast Fourier transform processor is an eaxbngple of parallel computer architecture.
Though seeral different oganisations hee keen proposed for these special purpose proces-
sors23 none of them exploited the divide-and-conquer sgsate obtain parallelism, because
the divide-and-conquer strategy requires ynprocessors xecuting the same algorithm and
processors used to be an expengsource.

Unlike the quick sort algorithm the fasb@érier transform perfectly divides the data int@tw
equal parts at each recwesinvocation. This should ali® for an optimal processor utilisation.
Using a free mixture of ceentional mathematical notation and SASL syntax, the essential
part of the program with the job annotation is shown in figure (7).
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fit 1r d =d

fit nr d= < fft halfn halfr > ++ < fft halfn (halfr + 128)v »
WHERE
halfn=n/2

X,y =splitd halfn
z=y*exp (halfr*i* 7/128)

Figure 7 : The annotated 512-point fast Fourier transform program

To amplify the presentation, the length of the data-list to be transformed has been fixed to 512
elements, which»lains the origin of the constant 128 in the program. Furthermore the result
list produced by this program is not in the right order and has to be passed through a reorder
function, which is, again for the salof amplicity, not shown. For a fixed length fasbiier
transform, lile the one in figure (7), the reorder function can be replaced by a fixed mapping.
The function applicationsplit d n) produces a pair of lists of which the first one contains the
first n elements ofd and the second one contains the res ¢dgainn elements). The func-

tion application (ft 512 0d) performs a 512-point fast Fourier transform on the dighat
contains 512 compkenumbers. All arithmetic on theeetor variables is assumed to be com-
plex. A vector of comple numbers is represented by a list of pairs, where each pair contains a
real and an imaginary part.

Since thefft function already requires the length of the list of data as a parameter this informa-
tion is readily aailable for the purpose of controlling the grain size. The transformation from
the version of the program shown in figure (7) to the final sandvacsion with threshold
control can be performed according to the guidelines of chapter 6.

4.3. Wang's dgorithm for solving a sparse system of linear equations

Many mathematical models of ghical reality consist of a set of partial differential equations.
An important step in approximating the solution of such a set of equations is ¢cashige

set of linear equationsThe corresponding matrices often appear to be in a tri-diagonal or
block tri-diagonal form. Wang has proposed a partitioning algorithm toweciéeallelism in

the elimination process of a tri-diagonal systéhAccording to Michielse and van depigg®

a dightly modified algorithm is well suited for local memory parallel architectures. The basic
idea of the algorithm is to divide a tri-diagonal matrix in equally sized blocks and to try elimi-
nation of these blocks in parallel. Theotadge blocks (top left and bottom right) ardesnded

by a zero column, to obtain the same size as the other blocks. Figure (8) shosvd2hol?2
matrix can be split into three blocks.
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Figure 8 : Partitioning of a tri-diagonal matrix £ 0)

Each block can ne be diminated in parallel. Figure (9) illustrates théeet of this part of the
algorithm on one block (i.c. the centre block of figure 8).

uuuooOo0O vvOoOTfoO
O uuuoOOo0 fOv OTfoO
O O0uuuo |[foOvfoO
0 00O uwuuwu f0OO0OVvu

Figure 9 : First elimination in one block

The elimination algorithm is designed in such aywihat the fill-in that arises (sha by the
letter f in figure 9) is confined to the first and fifth columns of the partition. The reason for
this confinement becomes apparent wheo #&gjacent blocks that ka been processed are
shown togethetike Hocks A andB in figure (10).
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Figure 10 : Elimination at the borders of the blocks

The rightmost column containing the fill-in of matriis the same column as the leftmost
column of matrixB, which also contains fill-in. When the topwr@f block B is used to elimi-
nate the right most valua)(at the bottom rav of block A, the latter rav only contains non-
zero values at the wopositions where fill-in still has to be eliminated (see the result in figure
10). If the same elimination is performed on all pairs of bordes rof adjacent blocks, the
resulting bottom nars of all blocks together constitute a tri-diagonal matrix. Figure (11ysho
this subsystem for thexample matrix and the result of the elimination. This can be \&hie
either directly with Gauss elimination or if the system is large enough by rexgppiication

of the partitioning algorithm.

Ow fOO 0O x 00O
O fwTfO|l—=|0O0Xx 00
00 fwao O 0 00 x O

Figure 11 : Elimination of the subsystem

After restoring the rows of the solved subsystem into their original positions as botterafro
each block (see the left matrix in figure 12) it can be observed, that it is possible to eliminate
all the fill-in of a block locallyonly using the bottom & of the next higher block. This final
elimination step is shown in figure (12) and again all blocks can be processed in parallel.
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Figure 12 : Final elimination

The SASL program that implements the algorithm is shown in figure (13).

Partition matrix= ParMap SecondEliminatiomatrix
WHERE
matrix, = SequentialPart matrix
matrix; = ParMap FirstEliminationmatrix

ParMap f(a: ())=(f @) :()
ParMap f(a: x)= < f a>: <ParMap f x>

Figure 13 : Skeleton of Warggdgorithm in SASL with annotation

The functionFirstEliminationincorporates the first local block elimination, which is shown in
figure (9). The results of this first parallel step are gatherednatox;, which is subsequently
reduced sequentially tmatrix, by the functionSequentialPart The latter implements the
pairwise border rv elimination of figure (10) and the Gauss elimination of bottowsrérom
figure (11). Finallythe second local block elimination, which is shown in figure (12), is per
formed by the functiosecondElimination

Paallelism is enforced by the functiddarMap, which assumes its second argument to be a
list. In order forParMapto yield a correct result, thmatrix should be structured as a list of
blocks: plock; , block,, blocks, - - -, block,). Thislist structure does not cause a performance
penalty because it is trgersed in a linear sequence BarMap. The grain-size of the parallel
computations of this program is completely determined by the size of the blocks into which
the matrix is initially divided. In contrast to the pi@us examples, there is no need for
dynamic grain size control (see also figure 24).

5. An extension of the reduction model to support persistent results

The sandwich strategy imposes a restriction on the type of applications that mayibtedlle
without loosing the advantages of the stygiteFor instance during the first phase of the com-
putation in Vng’s dgorithm, each job assigned to process a diagonal block of the matrix pro-
duces “fill in”, which must be eliminated during the third phase. Tdlees needed for this
elimination are calculated in a second phase. The Gauss elimination in that phase only requires
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the values of the matrix elements in the bottonvsr@f the matrix blocks. The remaining
matrix elements are returned with the results of the first phase, only to be incorporated in ne
jobs when the third phase is started. So a large part of the matrix is transported twice: once as
result of the first phase and once as part of a job in the third phase. The structure of the compu-
tations in the third phase is the same as that of the first phase, hence the matrix blocks will
probable arxie & the same reducer as before. huld hare lbeen more efficient to keep the
blocks in their respeste daces and connect the jobs generated during phase three to the “per
sistent” blocks.

A mechanism is proposed, by which a subexpression of a result can be marked, with the fol-
lowing interpretation:

The marked subgression in a result is replaced by a “remote name” when the result is
returned to its creatoinstead of the subexpression, only the remote name is transmitted.

*  After transmission of the result, the marked subexpressionad, saith its remote name,
for future use on the current reducer.

« When a remote name appears in a job, it will be allocated to the reducer that contains the
corresponding (marked) subexpression such thatrtteey be combined to form a com-
plete job The marking is then automatically destroyed.

A remote name is a unique identification of a subexpression. Except that it is generated and
destryed during reduction, a remote name is similar to the names that mayetéogixpres-

sions in functional programsA potential job must not contain more than one remote name,
since these may be bound to different physical locations. Outside a job a remote nhame has no
meaning. Furthermore, it may vee be dspensed with x@licitly, snce this would lege a
otherwise unreachable subexpression behind, which can not be garbage collected.

5.1. Thesandwich and own functions

The primitve function own generates a remote name and causes its argument to become a
marked subexpression; otherwise it has the same semantics as the identity functionfidt is suf
cient to mark just the root of the graph that represents themmalssion. A remote name is
recognised by theandwichfunction, if it appears as one of thg or a; in its second gu-

ment. The restriction to certain positions has theaathge, that the implementation of the
sandwichfunction does not ha © search for remote names throughout the graph that repre-
sents its second argument.

In the example shown in figure (14) tbenfunction marks the head of the result list, which is
returned by the functioRl. The latter reuses the valuer@wheadduring its next application.
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repeat oldheadldtail 1
= oldhead: oldtall
repeat oldheadldtail n
= repeat newheadewtail newn
WHERE
newn=n-1
newhead newtail = sandwich G (remote oldheadldtail newr)

remote oldheaaldtail n
=n=1 - newhead newtail
(own newheayl: newtail
WHERE
newhead newtail= H oldhead oldtail

Hax=(@+10): (x+7)
G(a:x)=a:(x+x)

Figure 14 : Cooperation of tleandwichandown functions

To darify the operational semantics of tbevn and sandwichprimitives, a number of reduc-
tions will be shown that appear during theleation of the applicationr¢peatO 0 3. There
are two processes wolved in this reduction sequence. Thesegehbeen namedparent and
child. The steps carried out by thhild process are shown offset to the right in figure (15).

step parenprocess stepchild process

1 |repeatO0 O 3
2 |sandwich G (remote0 0 2)

3 |[remote0 0 2
HOO
5 [(ownl0):7

N

6 |G (“remote namk: 7)
repeat“remote namel4 2
8 |sandwich G (remote“remote namel4 1)

\‘

9 |remotel0 14 1
10 |H 10 14

11 |G (20 : 21)

Figure 15 : Thewluation of fepeat0 0 3

The first application of theandwich function (step 2) is a normal sandwictpeession. It cre-

ates a job, which isvaluated by the child process. The “remote name” is generated by the
application of theown function in step 5. It is returned with the result, while thadue 10,
which it represents is left behind. Via the applicatioGdktep 6), The remote name is passed
to the next imocation ofrepeat(step 7). The secorshndwichapplication (step 8) generates a
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new job, which carries the remote name back to the child process, where it is replaced by the
subepression 10. By then, the third parameter to the functomotehas the value 1, such

that instead of a (W@ remote name, the value 20 is returned with the result. The computation
Is finished wherG has produced its result.

In the implementation of this mechanism no global name directory is required, because a
remote name carries a system wide address of the expression it represents. This address can be
used to send a job containing a remote name from anywhere in the system back to the creator
of the remote name.

5.2. Aparallel hydraulical simulation

A functional program that implements a mathematical model of the tides in the Notth Sea
has been transformed into arsion that will run efficiently on a parallel local memory archi-
tecture by the use of tlmvnfunction in combination with the sandwich stgatelTo be dle to

apply thesandwichfunction, the original program, which contains cycles, has to be trans-
formed into a program without cycles. Details of this transformation can be found a paper by
one of the author&’ Here only the essential elleton of the program will be used to clarify the
annotations.

Without the use of thewn function the tidal model would retransmit large matrices on each
iteration of its main recursion. Consequently the progralavrun much less efficient on a
parallel local memory architecture. The Wang partition algorithm, presented in section 4.3,
only suffers a small loss in fefiency without the own-annotation, due to the fact that the
matrix blocks are only retransmitted once during the whole calculation.

The plysical model of the tides repeatedly updates a matrix that contains approximations of
the x-\elocity, the y-velocity and the awveheight of the water in each point of a spatial grid. In

a parallel \ersion of the program the matrix can be split into asynbotks as the degree of
parallelism requires. Wanly present a partitioning of the matrix intoawlocks, to concen-

trate on the annotation issues. Figure (16) shows the main recursion of the program, which is
started with tw partitions called_eft andRight. These partitions will be updated in parallel.

main LeftRight n=repeat Update (Left : (Right: (LeftBorderOf Righp) n

repeat fx 0= GetRemoteData x
repeat fx n=repeat f(f x) (n-1)

Figure 16 : The main recursion of the tidal model

The functionUpdate submits the matricekeft and Right to different processors, where the
actual updating takes place in parallel. All subsequent reeursiocations ofUpdatg will
only transmit remote names instead of real matrices, due to the applicatiomwhthenction
in the remote processors (see bglorherefore a special functidgdetRemoteDatés provided,
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to force the transmission of the actual matrices at the end of the main recursion. Figure (17)
presents the functiodpdatg. The process of the updating itself is split int@ phases, after

each of which communication of one border of the matrices takes place. The first phase
updates the xelocity in both matrices and is implemented by the functigpdateXleftand
UpdateXright In the second phase both the y-velocity and theeleight are updated by the
functionsUpdateYHleftandUpdateYHright Both update phases are dependent on each other
and hae © be wun in sequential ordeihe left and right parts of each update phase are
executed in parallel.

Updatg M = <UpdateYHleft Left>: < UpdateYHright Right BorderOfLeft »
WHERE
(Left; : BorderOfLeft) : Right; = Update M

Update (Left, : (Right, : BorderOfRighj))
= «UpdateXleft Left BorderOfRighs > : < UpdateXright Right >

Figure 17 : The te phases of the updating with annotations
The illustration of figure (18) sk the desired communication structureUgdate and

Update. The dashed arves represent the transmission of remote names, whereas the solid
arrows denote communication of real data.
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UpdateYHleft

“left” processor “right” processor

Figure 18 : Communication structure of the tidal model

When transforming the definitions Opdate andUpdate to sandwich versions, the normal-

ising variant of the sandwich has to be used, to obtain the correct sequence of both updates.
Once the eduator requires the result of the functiblpdate (see figure #fig taphase#),
reduction continues with the normalisation of thguanentsLeft;, Right; and BorderOfLefi.

This normalisation in turn forces thgaiation ofUpdate. So Update will execute prior to
Updatg. The updating of the x-velocities will run in parallel, yielding the normal farefs,

Right; and BorderOfLeft, directly followed by the parallel updating of the y-velocities and
wave heights.

Figure (17) shows the need for thvnfunction to aoid redundant data communication. After
completion ofUpdateXleftthe resulting matrixeft; is returned and passed unmodified as an
argument toUpdateYHleft The updating of matrixRight, follows the same pattern. Both
matrices are reced as a esult to be immediately retransmitted as an argument to e ne
updating phase. If the functiondpdateXleftand UpdateYHleftwould be e@auated on the
same processothe matrixLeft; could be retained in this processor and a remote name could
be returned instead. The same applies to the nRigit; and the functionslpdateXrightand
UpdateYHright The only real data to be returned and retransmitted iBthrderOfLeft,



chap V Paallel graph reduction for divide-and-conquer applicatfons 111

which travels from the “left” processor to the “right” processbigure (19) shows the annota-
tion that is necessary to obtain the desired behaviour:

UpdateXleft Left BorderOfRighs = (own Left) : RightBorderOf Left
WHERE
Left; = updateXleft Left BorderOfRighs

UpdateXright Right = own (updateXright Righf)

Figure 19 : Retention of the left matrix

The functionUpdateXleftreturns a remote name for mattieft; and real data for the border

of Left;. The actual updating tek place in the functionpdateXleft(without capital U).
UpdateXrightjust returns a remote name for matRight;. Both functions retain the actual
matrices in the processors yheave been assigned to by the sandwich. Because the remote
names Left; and Right; are passed as arguments to respaygti UpdateYHIleft and
UpdateYHright applications of the latter functions will subsequently be allocated as jobs to
the processors where the matri¢est; and Right; reside. By retaining the matrices a consid-
erable saing of communication cost is ackiegl. If the size of the matrix is then without the

own function the amount of data to be communicatedld/ hare keenn x n, whereas nw the
information to be transmitted is of the ordemof

The functions of the second updating phase are similar to those of the first phase. Because the
main recursion of figure (16) appliepdatg to its avn output, one can see that the results of
UpdateYHleftand UpdateYHrightare also redirected without yamodification into the net

iteration ofUpdateXleftandUpdateXright Figure (20) shows the annotation that is necessary

to retain the matrices in their respeetjrocessors and to return the actual data of the border

of Right;:

UpdateYHleft Left= own (updateYHleft Lef)

UpdateYHright Right BorderOfLef; = (own Right) : (LeftBorderOf Right)
WHERE
Right; = updateYHright Right BorderOfLef}

Figure 20 : Retention of the right matrix

As before, the update functions (without a capital U) in figure (20) perform the actual updating
of the matrices.

The function to force the transmission of the remote matrices at the end of the main recursion
Is shown in figure (21):
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GetRemoteDatéleft : Right) = < | Left>: < Right >

Figure 21 : Retrieal of both matrices

Both Left and Right will always be remote names during the iteration of updates, due to the
effect of the own function (see figures 19 and 20). Theejols in figure (21) will therefore be
sent to the processors whereft and Right happen to reside. Upon reception of these jobs the
remote names will be deleted and after thauation of ( Left) and (I Right) the result Left

and Right) will be returned. No more retention t&kplace, because the jobs no longer contain
the own function. Finally the tw matrices are paired to represent the state of the tidal model
aftern iterations.

6. Formal description of the transformation schemes

In the previous sections wevspesented seral examples of application programs with jobs
that are annotated by job brackets. Only in the fkatple QuickSor) the proposed job-lift-

ing and grain size transformations were actually carried out, resulting in a pasesieinvof

the application. In this section we present a formal description of the transformations that is
sufficiently general to handle alivgn example programs.

To describe the job lifting and grain size transformations it icsenmt to define a set of func-

tions operating on restricted syntactic domafht particular no knowledge of the xpression
syntax of SASL is needed. The required domains are listed in figure (22). From the basic
domains the abstract syntax simoin the same figure constructsot@omposed domains: the

set of tokens and the set of sequences of tokens. It should be noted that the jeis brack
included in the token domain. No highevdesyntactic structures need to be recognised in
order to describe the transformations.

Syntactic variables and their domains:

| : Identifiers
L : Literals

O : Operators
T . Tokens

S :  Sequences

Abstract syntax:

S:=T|S T
T =1 |L|O|WHERE |=|(])]|-|:],

Figure 22 : Syntactic domains and abstract syntax of a definition with jobs

The two main transformation functions are JL (job-lifting) and GS (grain siza)r Bdditional
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functions are used: SQ (sequentialy, (left grain size test), R(right grain size test) and/A
(annotation). The latter three functions are application dependent and should be specified for
each application separatelhat is wly their names are provided with a fsufF, which repre-

sents the name of the function being transformed. The functiodegides which of the tw
sandwich functions to use, either the strict os@n@wich) or the non-strict versionsgnd-

wich). The left and right grain size testsg(Rnd L) generate predicates that yieldRUE
wheneer the grain size of the jobs is algan goplication dependent threshold.

The transformation functions JL, GS and SQ are defined independently of the application by
the equations of figure (23). The job lifting function (JL) transformsendunction definition

into a version where the twjobs are lifted from a general expression into a single function
application. JL also generates a sequengaion of the annotated application that will be
called when the grain size drops helthe threshold.Next the lifted function definition is

passed to the grain size transformation (GS), which inserts the grain size tests and the sand-
wich application. The auxiliary transformation function SQ serves to replace the name of the
function being transformed by the unique identifgg,

Conventions for variables: Conventions for constants:
F Identifiers GP,Q : Identifiers

T . Tokens

a,g . Sequences

b,c,d,e,f : Sequencewithout occurrences of WHERE or =

JL[Fa=b<«c>dce>f WHERE g] =
SQIFI [ Fa=b (c)d(e) f WHERE g]
GS[Fa=G (c) (¢) WHEREG P Q=b P dQ f

gl

JLIFa=b<c>d<ce>f] =

SQIFI T Fa=b (c)d(e) f]
GS[Fa=G (c) (& WHEREG P Q=b P dQ f]

GS[Fa=G (c) (¢ WHERE g] =
Fa=Le[al [ 9] -
Rel[al [ ol -
Ar G () (¢
G (c) (SQRIFI [el)
Relal [ ol -
G (SQIFI MTcl) (¢
G (SQIFI [cl) (SQIFI MTel)
WHERE ¢
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SQIFI I F all =Fsq SQLFI [ al
SQIFI LT al =T NIFI[al
SQLFIT T 1 =T

Figure 23 : Equations job lifting and grain size transformation

The transformation schemes JL and GS can deal with a function that contains more than one
equation. The ariable F matches the function name in the first equation and @heble a
matches all tokns until the equals symbol (=) in the equation with the job brackeen(

> ). Similarly the variablgg matches all remaining equations.

Figure (24) shows the functionssAL: and R to be used for the transformation of the appli-
cation programs presented in the previous sectiamgetiier with the transformation schemes
of figure (23) thg generate parallel sandwiclensions of the presented application programs.
In those cases, where the grain size predicates are identical to the fiti&nthe condi-
tional statements generated by the grain size transformation can be simplified.

Le Re Ar
QuickSort length m> Threshold lengtm > Threshold sandwich
FFT halfn > Threshold halfre> Threshold sandwich
Wang TRUE TRUE sandwich
Wawe Updatg TRUE TRUE sandwich
Wawe Update TRUE TRUE sandwich
Wawe GetRemoteData TRUE TRUE sandwich

Figure 24 : The functions A Lg and R for all applications

7. Relatedwork

In our opinion locality is an important concept in computer architecteoeinstance the suc-

cess of virtual memory is largely based on locality in space exhibited by most programs. The
current proposal can be classified as a “locality first” design, which makes it different from
most contemporary research in the area. Relateld will be characterised by the importance
attached to the phenomenon of locality in space.

A “divide-and-conquer” combinatorag first introduced by Burton and Slé&phe main top-

ics in their paper are network topology and load distribution girafe general annotation
scheme for thel-calculus is decloped by Burtor?? which is also applicable to for instance
Turner's combinators. The annotations can be used to control transportation cost of parallel
tasks. Although the notion of self contained subexpressions is introduced, the paper does not
concern itself with problems associated with practical graph reduction. In recent work,-McBur
ney and Sleep? propose a paradigm that models divide-and-conquenvlehaTheir results

are based on experiments with transputers but the paradigm is not used in a functioxial conte
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Linear speedups are reported for small programs.

The “RediFlow” architectuf® provides a global address space, but locality is supposed to be
inherent to the function Vel granularity Divide-and-conquer applications are mentioned as
one possible source of parallelism. The problems associated with a tempiatey cople-
mentation ofgreduction in an implementation of thecalculus form one of the major topics

of another paper by KelléP The way a closure is implemented brings about some locality.

The “serial” combinatdt 3Lis introduced as an optimal grain of parallelism in the context of
fully lazy, parallel graph reduction. The practicality of the approach is demonstrated using a
network of processing elements, each with a local store. drilg architecture supports a
global address space, in which each processing element is responsible for a portion of the
store. Localityis supposed to be maintained by the way tasks diesed to the processing
elements to which referencedst. Incontrast to this approach, the sandwich sgratnd job
concept may be weed as a combination of user annotated strictness and user annotated com-
binators. In addition we propose a “threshold” mechanism to dynamically control the grain
size of parallel computations. Tlevn function is a user annotated optimisation of data trans-
port.

The “GRIP” proposafl: 13avadds the locality issue by using a (high speed) bus as the connec-
tion medium between all major system components (processing elements and intelligent stor
age units). The machineoits conserative parallel strategies and a “super” combinafor
model of reduction. In the “FLASHIP” machine, both dynamic task relocation and local
caches are supposed to increase locality of the fine grained paaketgeon a local memory
architecture-?

8. Conclusions

In a parallel graph reduction machine, the optimality of grains of computation depends on
properties of the application program and the machine architecture. Based on some commonly
obsened properties of distriied architectures, a class of application programs has been des-
ignated, which if transformed and annotated according to our guidelines will benefit from par
allel evaluation on these architectures. In principle our method tries to adapt the locality of the
applications to that of the architecture by yiog expressions. Duplication of work igaeded

by changing the order of the calculations. Suitable grains of panadlahéon are obtained by
grouping certain computations.

Program transformations are necessary to obtaiicieutly large grain computations. it/
realistic applications these transformations require substantial effavevigiobecause of the
referential transparegqroperty of functional programs this effort is less than that incurred in
general concurrent programming. It is comekle that programming tools can bevdeped to
assist the programmer in applying the program transformatiobhsyéd hae rot investigated
such possibilities.
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The sandwicheluation strategy bridges the gap between divide-and-conquer algorithms and
distributed architectures. The methodveeped to apply this strategy is independent of the
functional programming language used. The proposgddation strategy will fit most normal
order graph reduction systems.

The practicality of the proposed annotations is demonstrated by transformation of four appli-
cations, ranging from thea$t Fourier transform to a tidal model, into versions that will run
efficiently on parallel machines based on a local memory architecture.

The control eer the generation of parallelism and the grain sizexésted by the applications,
rather than by the system. Heuristics for grain size control are tailor made to the application
program and are therefore a guarantee for best results.

By choosing adequate values for a “threshold” paramitermaximum number of jobs may
be kept within limits acceptable to the concrete architecture. This topic andoth@ie prac-
tical issues related to the optimalwe of the threshold (see at the end of section 4.1) will be
pursued in part Il of this papéf.
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Abstract

A parallel functional program to predict the tides of the North Sea is developed in three stages.
The first version of the program is obtained by a direct translation of the mathematical model.
Two successive transformations appear to be necessary to remove inefficiencies and to enlarge
the grain size of parallel computations. The enlargement of parallel grains is needed to make the
program well suited for coarse grain architectures. The method to enlarge the grain size, called
data grouping, can be elegantly expressed in a functional language and has a wide range of

applications.

1. Introduction

Functional languages are often considered to be well suited for parallel machine architectures
[VEGS84]. At any given stage during its evaluation a functional program may contain several
function applications that can be rewritten (reducible expressions, or shorter: redexes). The
Church-Rosser property of functional languages offers the theoretical possibility to evaluate
these redexes in parallel. However, there are two major problems that limit the exploitability of
the available parallelism:

1+ Not all function applications are needed to compute the final result. So indiscriminate

(parallel) evaluation of all redexes may lead to a waste of computing resources.

2+ Most function applications will not contain a sufficient amount of computation to

justify the overhead that is incurred by data transmission and process synchronization in parallel

! Present address of the author is University of Amsterdam, FVI, Post Box 41882, 1009DB Amsterdam, The
Netherlands
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machine architectures. The grain size of a function application will be defined as the amount of

computation needed to evaluate this application.

The first problem has given rise to the development of strictness analysis of functional
programs. The strictness of a function in its arguments is an undecidable property and can to
some extent be determined in flat domains by the technique of abstract interpretation [MYCS81].
The second problem of grain size in functional programs, has received some attention
[HUDS85,HUGS84,KEL84]. Also the grain size of a function application is an undecidable
property and has to be compared to the inaccurate notion of communication cost and process

synchronization overhead.

2. Grain size enlargement

This paper concentrates on the grain size problem in relation to a specific class of MIMD-
architectures. In these architectures the cost to transport an elementary data item is large
compared to the cost to execute an elementary machine instruction (e.g. a reduction step).
Many MIMD-reduction machines that are currently under development belong to this class
[BAR&7]. It will be demonstrated, with the aid of an example program of moderate size, that it
is sometimes necessary to perform complicated program transformations in order to obtain a
useful grain size for these MIMD architectures. This claim is made by considering the source
text of the program and determining the largest possible grain of parallel computation. Because
this grain size appears to be still too small for the considered class of architectures, a program

transformation has to enlarge the grain size.

The grain size that would be obtained by the translation of a program into super-combinators
[HUGS84] or serial-combinators [HUDS8S5] is bound to be smaller (or equal) than the largest

possible grain size at source text level.

The example program has been developed as a test case for the current design of an
experimental MIMD-reduction machine for the Dutch Parallel Reduction Machine project. The
program is a simplified version of a production program used by the Dutch Water Board
Authority to predict the tides of the North Sea.[HEES85,86] Although simplified it is
representative for the original program in the sense that speed-up by parallel execution, will
also hold for the original program. It contains sufficient details (like influence of wind, coriolis

force, bottom friction etc.) to make a reasonably accurate model of the tides.

Apart from the contribution to the discussion on the grain size problem the paper also adds a
(parallel) program to the small number of existing functional programs that could serve to test

the validity of parallel reduction architectures
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3. The physical problem

This section describes the basic knowledge of the application domain that is necessary to
understand the example program. The water movement in an estuary is approximated with a
mathematical model in two spatial dimensions. This means that the velocity of the water is
assumed not to vary in the vertical dimension and so only very large waves, like the tidal waves

will be modeled appropriately. Figure 1 shows the equations that constitute the approximated

model.
du u V2cosY
4 - . + — - =
0 9 VA, p 0
dv % VisinY
—+qg —+fu+ A —- =0
0t 959 ) D
0_h+ 0(Du)+ 0(Dv)=0
0t dx dy
where:

h = small variations in the water height
v = water velocity in the y-direction

f = coriolis parameter (1.25 10-4 5‘1)

y = wind transfer coefficient (£3.2 10‘6)

Y =wind direction

u = water velocity in the x-direction

g = acceleration of gravity (9.8 ms‘2)

A\ = bottom friction coefficient (2.4 10-3 ms‘1)
D = water depth as function of x and y

V = wind velocity

FIGURE 1: The linearized shallow water equations.

The first two equations state that the water velocity is proportional to the gradient of the water
height and the effects of the earth rotation (f), bottom friction (A) and wind (y) are included.
The third equation expresses the conservation of mass. It states that a disappearing quantity of

water will result in a decreasing water height.

The numerical approximation of the proposed equations that we have used in the example
program is presented in figure 3. (for a derivation see [HOU68]) The variables from the
equations of figure 1 (u, v and h) have been approximated by their values on a spatial grid
(subscripts 1, j respectively in the x, y direction) at discrete points in time (superscript k). Figure
2 shows that each of the variables u,v,h and the depth D has its own grid that is slightly shifted

with respect to the others. Such a space-staggered grid allows for an easy boundary treatment.
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FIGURE 3: the finite difference scheme

It turns out [HEES85,86] that the system of figure 3 is stable under the following condition :
At < 2 Ax Ay (gD(Dx2 + Dyz))_”2

Based on the finite difference scheme the example program will now be developed in three

stages. The first version of the program is the direct translation of the finite difference scheme

into SASL and the two subsequent versions are produced by successive transformation of the

previous versions. After each stage the amount of parallelism and the grain size will be

discussed.

4. The first program

Because the finite difference scheme is similar to a set of recursion equations, they almost
constitute a functional program. For the simple case of a rectangular grid, the corresponding
SASL program is presented in figures 4 and 5. To obtain this program all sub- and
superscripted variables (u, v, h and D) in figure 3 are replaced by a function of their sub- and

superscripts, in the following way:

u 'O uijk vii'Ovijk hi'Ohijk D,,0 Dij
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As an example figure 4 shows the SASL' function corresponding to the variable u that is
obtained in this manner. The only additions to the transformed equation are the two initial "if"-
statements. The first one terminates the recursion on the discrete time variable k. The second
"if" implements the boundary condition of a rectangular grid. (note that only i needs to be
tested, due to the space staggered grid of figure 2 [HEE85,86]).

uijk = k=0->u0 ij

i=0|i=imax->0

uij (k-1) - heightgradient + coriolis - friction

WHERE
heightgradient =g * At/ (2 * Ax) * (hij (k-1) - h (i-1) j (k-1))
coriolis=f* At/ 4 * (v (i-1)j (k-1) + v (i-1)(j+1)(k-1) + v ij (k-1) + v i (j+1)(k-1))
friction=2*At*(A*uij(k-1)-wind)/ (Dij+ Di (j+1))
wind =V *V *cos(W¥)

FIGURE 4: SASL function for the x-velocity u.

In the same way, the functions corresponding to the variables v and h, are constructed from the
equations of figure 3 (the second "if" for v should now test j, and no boundary test is needed
for h). The SASL program is completed by including the initial values of u,v and h and all

constants ( as an example see figure 5).

ud ij=0 | initial values of u e.g. all 0
vOo ij=0 [| initial values of v e.g. all 0

hO ij=3*i/(imax-1) [ initial values of h, e.g. a water slope

imax = 100 || rectangular grid with 100 * 100 gridpoints

jmax =100

Ax = Ay =10000 [| =10 km, so one side of the square estuary is Ax * imax = 1000 km
At =800 || one time step is 800 seconds; the stability condition is satisfied
Dij=30 || Depth function, e.g. constant depth of 30 meters.

|| the other constants ( for their values see fig 1) have to be included here
FIGURE 5: the first program.

Although the translation of the program closely resembles the original equations, it suffers from
a serious drawback, namely the recomputation of function applications. From the definition of h
and u it follows that: (see figure 3 and 4)

hijkneedsthe value of hij (k-1), u (i+1) jk uijk =>
uij kneeds the value of hij (k-1), h (i-1) j (k-1)
hijkneeds the value of hij (k-1),h (i-1) j (k-1), h (i+1)j (k-1) 1)

1 We will use both Greek and Roman characters in identifiers and in section 5 we will extend SASL with a

notation for array subscription.
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and rewriting 4 (i-1) j (k-1) with 1) —
hij kneeds the value of hij (k-1), hij (k-2)

So in the mutual recursive scheme hides a recursion of the Fibonacci type and in fact there is
such a recursion for each variable, giving rise to exponential recalculation of function
applications. One solution to this problem could be the use of an applicative cache [KEL81],
but a cache introduces two other problems. On the one hand, implementing a global cache in
the considered class of MIMD-architectures, causes a lot of communication overhead. On the

other hand it complicates reasoning about grain size of computations.

Another solution could be the use of "memo-functions" [TURS&1], but in this application they
appear to require an unreasonable storage capacity because the values of u,v and h will be
"remembered" in all grid points at all time steps. Instead we propose a transformation of the
program into a finite state machine, which might also be considered as a kind of "memo-

function" but with a restricted short term memory (i.e. the state).

5. Transformation to the second version

The second version of the program is obtained from the first one by ordering the calculations in
such a manner that recomputations will be avoided. The set of recursive difference equations is
transformed into a finite state machine, where the state consists of a matrix containing the
values of the variables u,v and h in each grid point (figure 6). The program then repeatedly
distributes the same calculation over all matrix elements (like the map function) and proceeds
until the desired final state has been reached. The successive creation of new matrices (by the
repeated distribution) does not compare unfavourably to an imperative program doing

destructive updates, because of the following two reasons:

1) For each iteration the algorithm requires all matrix elements to be recalculated, so

there is no needless structure copying.

2) Once the new matrix has been calculated there are no references left to the old one

and memory space can be recovered.

Transform
using
tabulate

matrices
u,vand h

FIGURE 6: A finite state machine

To deal efficiently with matrices we introduce an array data type, where subscription can be

performed in constant time. An array will be characterized by a descriptor, containing the upper
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and lower limit of the index in each dimension *;

descriptor = (I1,u1),(I2,u2)

Subscription of the array variable u is denoted by u[i,j] and results in the value u. . in constant

A

time. "Tabulate f d" is a special function that tabulates a binary function f over all index pairs

specified by descriptor d. It constructs a 2-dimensional such that:

(tabulate fd) [ij]1="fij, I1si5u1 : IZSjSU
"Tabulate" is the source of parallelism in the finite state machine of figure 6. The function
applications ( f1ij ) form the largest grain of parallel computation and should be distributed by

"tabulate" over the available processors in the MIMD architecture.

Figure 7 shows the second program, where the functions "repeat" and "transform" define the
finite state machine. The functions fu,fv and th can be derived from the previous program. For
instance, the body of (fu u v h 1) in figure 7 can be obtained from the body of (u ij k) in figure
4 by replacing each occurrence of "i j (k-1)" by "[1,j]". The definitions of fv and th are derived

in the same way.

! The array data type is shown for the case of two dimensions because the example program only needs two

dimensional arrays.
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solution n = repeat n (uinit,vinit,hinit) || u,v,h after n time steps

repeatO0 (u,v,h) =(u,v, h)

repeatn (u, v, h) =repeat (n-1) (transform u v h)

dscru = (0,imax ), (0,jmax -1) || array descriptor of u
dscrv = (0,imax -1) , (0,jmax ) || array descriptor of v
dscrh = (0,imax -1) , (0,jmax -1) || array descriptor of h
transform uv h || calculates the matrices at the next time step

|| (u1,v1,h1) from the current ones (u,v,h)
= (ut,v1,h1)
WHERE
u1 = tabulate (fu u v h) dscru
v1 = tabulate (fv u1v h) dscrv
h1 = tabulate (fh u1 v1 h) dscrh

fu uvhij
= i=0|i=imax->0
ul i, j ] - heightgradient + coriolis - friction
WHERE
heightgradient =g * At/ (2 * Ax) * (h[i,j]-h[i-1,j1)
coriolis=f*At/4 * (v[i-1,j]1+ v[i-1,j+1] +v[i,j]+ v[i, j+1])
friction=2*At* (A *u[i,j]-wind)/(Dij+Di(+1))
wind =V *V *cos( W)
fv uvhij || constructed like (fu u v hij) from the body of (v i j k)
fhuvhij || constructed like (fu u v hi j) from the body of (hij k)
uinit = tabulate u0 dscru || initial values of u,v and h
vinit = tabulate vO dscrv

hinit = tabulate hO dscrh

[|lthe rest of the definitions are identical to those needed in figure 5
FIGURE 7: The second program

Although the program of figure 7 does not recompute function applications it is still far from
being well suited for large-grain parallel distribution. This is because the functions fu,fv and th
which are distributed by tabulate do not have recursion. Worse yet they contain a lot of small
array references (that might cause data communication). There is no way to arrange for an
efficient implementation of tabulate under these circumstances. The most efficient way is
probably to cut the matrices into regular pieces, distribute these parts and to require a remote

processor to perform the tabulate on that piece it happens to receive. However, when the array
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references do not exhibit locality, each processor will have to make as many global references
as it received array elements and thus communication cost grows as fast as the amount of
computation. (i.e. proportional to the number of array elements). If the array references do
have locality, then an implementation of tabulate cannot know how to divide the matrices

without corrupting locality.

6. Transformation to the third version

The next transformation constructs a course grain parallel program by using the presence of
locality in the grid point calculations of the previous program. Because of this locality it is
possible to split the original finite state machine (of figure 6) into several communicating finite
state machines, without a significant increase of communication cost. This is accomplished by
dividing the original matrices (u,v and h) into several subparts and to associate with each
submatrix a function that is almost identical to the program of figure 7. To save space and to
gain clarity the transformation is only elaborated for the simplest case of two submatrices (see
figure 8), but extension to more submatrices is straight forward. The number of parallel
processes (submatrices) is limited by a communication-processing trade-off. The amount of
computation per process is proportional to the number of grid points in a matrix partition and
grows with the square of the size of the partition. The amount of communication, however, is
proportional to the number of border grid points and only grows linearly with the size of the
partition. Given a sufficiently large problem, this property theoretically allows the program to

be adjusted to any communication speed and any amount of parallelism.

It is important to notice that the functions fu,fv and th of the second program can be used
without modification in the third version i.e. the transformation merely adds a layer to the
program. This layer describes a set of communicating processes, each of which comprises the
unmodified functions of the second program. This elegant structure might well be attributed to

the hierarchical structure of functional programs.

(ul,vl,hl) (ur,vr,hr)

left part borders right part
u,vand h Proc w,v and h Proc u,vand h

FIGURE 8: A partition in two processes

Both processes in figure 8 are course grain, as they are continuously updating half of the
original matrices. They can also be conveniently distributed to different processors as only their
borders have to be transmitted after each time step. The partition of the matrices is based on the
precise lay-out of the space staggered grid. Without going onto details, one can compare the

descriptors of the left and right matrices in figure 10 with the illustration of the partitioned grid
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in figure 9. The column uly and the columns vry ,hrg in figure 9 constitute the borders that have

to be communicated between the left-and right process.

ur vr hr
A
: o _“ 12 Nk
ar- 7o T o7 B v T T
<+ + - + - + - + - + — + — 4+ — + -
2(T 1 | | | | | | |
4+ -+ -+ - + - + — + — + — + -
1 C 1 1 1 1 1 1 1 1
-+ + — &+ — 4+ — + - + —_ = =+ — 4
0 C t t t t t t t t
0 1 2 , k imax
g
ul vl hl
FIGURE 9: The grid partition
k =imax /2 || imax assumed to be even
dul =0 ,k ),(0jmax-1) || descriptor of u-left
dvl =0 ,k-1),(0,jmax ) || descriptor of v-left
dhl =0 ,k-1),(0,jmax-1) || descriptor of h-left
dur = (k + 1,imax) , (0,jmax - 1) || descriptor of u-right
dvr = (k,imax - 1), (0,jmax ) || descriptor of v-right
dhr = (k,imax - 1), (0,jmax - 1) || descriptor of h-right
ulo = tabulate u0 dul [| initial u-left matrix
ur0 = tabulate u0 dur [| initial u-right matrix

|| similar definitions for vIO,vr0,hl0 and hr0 using their corresponding descriptors

|| the rest of the definitions are identical to those of figure 5

FIGURE 10 : the descriptors and initial values of the partitioned matrices.

0 o0
(ur ,vr ,h? ) =mg0

FIGURE 11: the structure of the third program (refinement of figure 8).
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The program structure is illustrated in figure 11. For the sake of clarity the three matrices u, v
and h have been grouped together (matrix triplet) and are passed as such from function to
function, although each function only updates one of the three matrices. The left and right
process each consist of three functions, interconnected by infinite lists (streams) of matrix-
triplets. The two triangles at the bottom of figure 11 represent the initial pairing function that
prefixes the infinite lists (mth and mgh) with the initial matrices. The functions Fu,Fv and Fh
process the left matrix-triplet stream. They contain respectively the unmodified functions fu,fv
and th of the second program (figure 7). Gu,Gv and Gh process the right triplet stream and also
contain fu,fv and fh.

Communication between the two processes is performed by the function 'First, which
continuously transmits the first columns of 'vr' and 'hr', and the function 'Last', which
continuously transmits the last column of 'ul'. The SASL program corresponding to the

illustration of figure 11 is shown in figure 12:
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solution k=mfh k,mgh k || the estuary after k time steps

mfh =Fh ( Fv mfu) || the left process
mfu = Fu ( mfO : mfh ) mghds

mfulst = Last mfu

mgh = Gh mfulst ( Gv mfulst mgu ) | the right process
mgu =Gu mg
mg =mg0 : mgh

mghds = First mg
mf0 = (ulo, vIO, hiO ) | the initial triplets
mg0 = (ur0, vr0, hrQ )

Fu ((u,v,h ) : Restuvh ) (( vc,hc): RestvhCol)
= (u1,v,h) : Fu Restuvh RestvhCol
WHERE u1 = tabulate ( fu u (appendcol v vc) (appendcol h hc)) dul

Fv ((u,v,h): Restuvh)
= (u,v1,h): Fv Restuvh
WHERE v1 = tabulate (fvuv h) dvl

Fh ((u,v,h): Restuvh)
= (u,v,h1):Fh Restuvh
WHERE h1 =tabulate (fhuv h) dhl

Gu ((u,v,h): Restuvh)
= (u1,v,h): Gu Restuvh
WHERE u1 = tabulate (fuuv h) dur

Gv ((u,v,h): Restuvh ) (uc: RestuCol)
= (u,v1,h):Gv Restuvh RestuCol
WHERE v1 = tabulate ( fv (prependcol uuc) v h) dvr

Gh ((u,v,h): Restuvh) (uc : RestuCol )
(u,v,h1):Gh Restuvh RestuCol
WHERE h1 = tabulate ( th (prependcol u uc) v h) dhr

First ((u, v, h)): Restuvh ) = (firstcol v, firstcol h) : First Restuvh

Last (( u,v,h ) : Restuvh ) = lastcol u : Last Restuvh

firstcol matrix = || returns the first column of matrix

lastcol matrix = || returns the last column of matrix

appendcol matrix col = || appends column after the last column of matrix
prependcol matrix col = || prepends column before the first column of matrix

|| the definitions of figure 7 and 10 should be included here

FIGURE 12: the third program .

chap VI
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To run the program on a two processor system, the function applications defining the streams
"mfh, mfu and mfulst" should be evaluated on one processor and those defining "mgh, mgu, mg
and mghds" on the other processor. In a parallel implementation of SASL, these streams can be
marked, to communicate the programmers intentions to the compiler. The proposed annotation
of streams serves two purposes: it indicates the coarse grains of parallelism and it prescribes the

static distribution of these grains.

It is interesting to know how much the second program is slowed down by the addition of the
distribution layer. Counting reduction steps of both programs on the same input showed an
overhead of 2%. A simulation of a 104 km? estuary during one hour of physical time took
respectively 201597 and 204719 combinator reduction steps for program 2 and 3.

7. Data grouping

The essential part of the technique that is used in section 6 to enlarge the grain size of parallel

computations, can be emphasized by giving a one dimensional example without recursion:
ParTabulate F (1..10) O SeqTabulate F (1..5) in parallel with SeqTabulate F (6..10)

The function ParTabulate is supposed to distribute all the applications (F 1), for i=1..10 over the
available processors, yielding ten parallel grains with a size of one application of F. In the
transformed program, however, SeqTabulate will perform five applications of F sequentially,
resulting in two parallel grains of five applications of F. We would like to call this method "data

grouping" because many fine grained applications are grouped into one larger grain.

8. Conclusion

A program of moderate size and complexity (a model of the tides in the North Sea) has been
developed in SASL, containing a flexible grain size that can be adjusted to fit a large class of
MIMD-architectures. It is demonstrated that in a functional language the program can be
developed in a systematical way. Two successive transformations are applied to a program that
is obtained by a direct translation of the mathematical model into SASL. The first
transformation removes inefficiencies due to exponential recalculation of function applications.
The second transformation, called "data grouping", enlarges the grain size of parallel

computations.

In a functional language, the latter transformation can be added to the sequential program as a
separate layer. This distribution layer can be elegantly expressed as a set of concurrent
processes, communicating via streams. Annotation of the obtained coarse grain parallelism
(required for a practical parallel implementation) by marking of the appropriate streams, also

indicates the static distribution of these grains.

The data grouping transformation has a wide range of applications, in particular those based on
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regular grid calculations (e.g. immage processing).
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abstract

Process networks can be elegantly expressed in functional languages by tail-recursive functions
interconnected by lazy streams. In a graph reduction system these kind of application programs
give rise to cyclic graphs. It is shown that a network of synchronous processes with possibly
cyclic interconnections can be transformed into a single acyclic synchronous process by
eliminating all streams. A formal definition of this transformation that we call communication
lifting is presented. As an example two application programs (a tidal model for the North Sea
and a simulation of digital hardware) are transformed and mapped onto a coarse grain parallel
reduction model that only supports strict argument parallelism. Such a mapping is not possible
for the original application programs, because there is no way to express the required "pipe-

line" parallelism of streams in a reduction model only based on strict operator parallelism.

1 Introduction

Functional languages with normal order semantics can be implemented efficiently on sequential
architectures by graph reduction [PEY87a]. The program is represented by a graph data-
structure in which data and computations may be shared. The basic mechanism of computation
is the rewriting of parts of the graph according to certain graph rewrite rules. A sub-graph that
can be rewritten according to such a rule is called a redex (reducible expression). The process
of rewriting is repeated until a certain halting criterion is met. For instance, reduction may be
stopped when the root node of the graph is no part of any redex. The graph is then said to be
on root normal form (also called head normal form in the world of term rewriting). In section 3

we introduce a notation for graphs and graph rewrite rules adopted from CLEAN [BRUS87,
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BAR&7a,b], which is an intermediate language specially designed to study both theoretical and
practical properties of graph reduction. It will be used to denote rewrite rules and to describe

the reduction behaviour of application programs based on concurrent processes.

In practical graph rewrite systems reducible expressions are always disjoint (because the rules
are weakly regular [BAR&7a]). This implies that once a subgraph classifies as a redex, this
situation will not change when other redexes are rewritten. Thus multiple redexes may be safely
rewritten in parallel. The possibility of parallel graph rewriting is the reason that graph
reduction is often considered as a suitable computational model for parallel computer
architectures. One can interpret the program graph as a collection of potential parallel rewrite
processes, where the graph expresses the communication and synchronisation needs between
these processes [PEY87b].

Parallel computer architectures can be divided into architectures that support a global address
space and those that do not. A global address space may be implemented on a shared memory
or on a distributed memory. Parallel reduction machines are currently being implemented on
both types of architectures [PEY87b, WAT87, HUDS8S5]. Within the framework of the Dutch
Parallel Reduction Machine Project [BAR87c], we have constructed an experimental machine
[HERS89] consisting of a collection of processors, each one equipped with a local memory. The
processors are interconnected by a communication network, based on dual ported memories. It
was decided not to support a global address space on this machine, because the hardware does

not allow an efficient implementation.

There is a fundamental difficulty in implementing normal order graph reduction on parallel
architectures that do not support a global address space. The problem is how to distribute the
global graph representation over the available disjunct storage spaces. Although the
interconnection of processors by dual ported memories provides a high communication
bandwidth, our architecture still charges a significant communication cost to transport data
from one memory to another. Because the cost to perform a single graph rewrite action can
vary widely from fine grain to coarse grain it is not easy to decide which parts of the graph are

worth being transported and reduced in parallel.

The approach that we have taken to implement normal order graph reduction on our parallel
architecture is characterised by a compromise between pure graph reduction and pure string
reduction. Within the local memories pure graph reduction is performed. When coarse grain
sub-graphs are detected, they are transported and reduced in parallel on remote processors.
This regime would be equivalent to string reduction, because transporting a sub-graph implies
that it is copied to another storage space. To avoid the duplication of work, implied by pure
copying, we have designed a special reduction strategy, which guarantees that the sub-graph to
be transported is a primary redex (a primary redex contains no other redexes). For divide-and-

conquer problems this reduction model has been demonstrated to yield good results on an
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experimental architecture [HAR88, VRES88]. A similar approach to parallel graph reduction
with significant speed-up figures is reported in [MCBS87].

The main subject of this paper is to demonstrate that apart from divide-and-conquer problems
another class of programs, modelling process networks, can also be executed efficiently with
our parallel reduction model. Writing a functional program as a network of stream processing
functions is already discribed by Kahn [KAH74] in 1974. However, the purpose of the
technique he introduced was purely theoretical, namely to describe the semantics of a set of
communicating processes. Later this mathematical technique became of practical importance

[WRAS86, KEL89], as efficient implementations of lazy functional languages emerged.

For a subset of application programs written as process networks we show that it is possible to
eliminate all streams and therefore also cyclic stream connections by a program transformation
that we call communication lifting. The transformed programs can be mapped onto our
reduction model, which only supports strict operator parallelism. Such a mapping is not
possible for the original application programs, because there is no way to express the required

"pipe-line" parallelism of streams in a reduction model only based on strict operator parallelism.

In addition to communication lifting two other transformations, called the sandwich- and the
own-transformation are informally described. These transformations are used to map programs

resulting from communication lifting onto our parallel reduction model.

2 Job model

In our reduction model the programmer is required to annotate needed coarse grain sub-
expressions, that we call jobs. Annotated jobs are evaluated by a special reduction strategy.

Both annotation and strategy are effectuated by a rewrite rule called sandwich.

Processor 1

( Sandwich F (G a;a,.) (H b/ b, .) )

Processor 2 Processor 3

Figure 1: The sandwich annotation of two jobs

In figure 1 an occurrence of the sandwich rule is illustrated. The sandwich expression has the
same meaning as F (Gaja2...) (Hb] b)...). Function F must be strict in all its arguments.

These arguments have to be coarse grain computations (jobs). The sandwich rewriting
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proceeds as follows: First the expressions aj a2 ... and bj b) ... are reduced to normal form.

This transforms the jobs Gaja) ... and H b b) ... into primary redexes. Next these primary

redexes are transported to remote processors, where they are reduced to normal form in
parallel. Reduction of F is delayed until the results of its arguments are returned. Instead of
transporting jobs to remote processors they may also be reduced locally, but a copy of the

jobgraph will still be made.

To benefit from parallel execution, the application program must be transformed in such a way
that a sandwich function can be inserted. This means that potential jobs have to be lifted to the
same level, because they have to be annotated by one sandwich expression. Though this may
seem an unnecessary constraint, it has the advantage that the implementation of the sandwich
only has to synchronise once for all denounced jobs (one context switch). Also the availability
of several jobs simultaneously, offers the possibility for better load-balancing decisions than

when jobs are discovered one by one.

The main disadvantage of the presented job-model for parallel reduction is that only strict
argument parallelism is supported. Application programs written as process networks do not
seem to fit into our job-model, even though these application programs do exhibit a clear

coarse grain structure (the processes).

Process networks are modeled in a functional language by tail recursive functions
interconnected via streams. Streams are (infinite) lists that are produced and consumed element
by element. If such functions (functional processes) would be distributed using the sandwich
construct the special reduction strategy would normalise the streams, destroying the stream-

property of element-wise production and consumption.

An additional difficulty arises when the interconnection pattern of a process network exhibits
cyclic structures. Such programs cannot be split into separate independent jobs. In the
remainder of this paper these problems will be examined and solutions will be presented that

yield an efficient mapping of (cyclic) process networks onto the job model.

3 Graph rewriting

To discuss the graph-reduction behaviour of process networks we adopt a linear notation for
graphs and graph rewriting from CLEAN [BRU87, BAR87b]. Each node in a CLEAN-graph
contains a constructor symbol and is identified by a unique label. Constructor symbols start
with a capital letter and labels are introduced by a post-fix colon. In principle each node may be
supplied with a unique label, but often labels will be omitted when nodes are not shared. Two
examples of a CLEAN-graph are given in figure 2. The examples illustrate the use of labels to

denote sharing and cycles in a graph.
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Cons mul
3 3
linear notation: n: Cons (3 n) linear notation: Mulm: 3 m

Figure 2: Linear notation for two graphs

The first example is a graph representing the infinite list 3,3, .... The second example denotes

the squaring of 3.

Graph rewrite rules consist of a redex pattern on the left-hand side and a contractum pattern on
the right-hand side. Both patterns are CLEAN-graphs that may contain variables identifying

arbitrary nodes. Consider for example the following rewrite rule:

Skip (Cons x (Cons y z)) — Cons x z

The redex pattern contains three variables: x, y and z. Each of these variables is bound to a sub-
graph during the matching of the redex pattern to the program graph. The top node of the
matched sub-graph (which must contain the constructor symbol Skip) is then replaced by the
graph specified by the contractum pattern. This means that the constructor symbol in the top
node (Skip) is overwritten by Cons and that two pointers in the node are directed to the graphs

matched by x and z.

Consider for example the reduction of the graph (Skip (Cons 3 (Cons 4 5)). The rewrite action

according to the rule for Skip can be described with the linear notation in the following way:

k: Skip (Cons | (Cons m n)) — k: Cons | n
I3
m: 4
n: 5

The arrow (—) in the first line indicates that the node labeled & at the left hand side is
destructively updated with the contents specified at the right hand side. The same reduction

step can also be described in a graphical notation as shown in figure 3:
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k: Skip k: Cons
'
Cons
3 Cons
M
m: 4 n: 5

Figure 3: A graph rewrite

To present a case analysis of the reduction behaviour of process networks, we use the linear
notation. The reduction steps can be easier presented using the linear notation than by drawing

a sequence of pictures.

The sequential reduction order that is used in the examples of section 4 is determined by the
functional strategy. This strategy performs reduction in much the same way as is usually the
case in lazy functional languages. An operational description of this strategy can be found in
[BRUS87]. The strategy performs reduction in a left-most order. An important aspect of the
strategy is that the process of matching a redex pattern may trigger recursive rewrite actions on

the graph that is being matched.

4 Sequential graph reduction of process networks

In this section the graph reduction behaviour of cyclic process networks is illustrated with the
aid of an example derived from a parallel simulation program for the tides in the North Sea. For
the example an ad-hoc transformation is presented that results in an acyclic program, which can
be mapped onto the job-based reduction model. Based on the ideas behind the ad-hoc
transformation, a general transformation technique (communication lifting) is developed in

section 5.

4.1 An example of a process network

As an example of a parallel functional program that is written as a process network, we
consider a tidal model of the North Sea. In [VRE87] it is shown that such a functional program
can be developed from the mathematical description by a number of systematical
transformations. The use of processes connected by streams allows an elegant transformation of

the sequential version of the tidal model into a coarse grain parallel version.

The program is based on a quantisation of physical reality on a two dimensional spatial grid,

represented in the program by a matrix. To simulate the tides, the matrix is repeatedly updated,
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yielding a sequence of values that represent the physical state of the model at consecutive time
steps. For the purpose of this section it is sufficient to consider a simplified model of the tidal
simulation, which defines two coarse grains of parallelism. In figure 4 rounded boxes represent
processes that consume and produce infinite lists (represented by arrows). The triangles at the
bottom of figure 4 represent Cons-nodes that prefix the infinite lists by the initial values of both
parts of the matrix (mleft and mright).

Figure 4: A simplified model of a parallel tidal simulation program

To obtain the coarse grains of parallelism the original matrix of the tidal model has been divided
into two equal parts with the intention to calculate the updating of these parts in parallel (by
processes F' and G in figure 4). The process Select4 is the main expression that produces the
output of the simulation.

Although the program of figure 4 exhibits a coarse grain parallel structure, it does not fit into
our job-model. The reason for this is the presence of global cyclic connections between the
coarse grain parts of the program. Because a job is by definition a subgraph, cyclic structures
always have to lie inside a job. Consequently the global cycles in figure 4 have to be part of one
job that will be reduced sequentially.

Detailed measurements of the graph structure during sequential evaluation of the tidal model
[HARS87], have shown that the global cycles disappear in an early stage of the execution. This
means that although the initial graph is cyclic, most of the reduction work takes place in an
acyclic graph, which might fit in our job-based reduction model. This observation has provided
the incentive to look for a transformation that eliminates possible cycles from process
networks. Before presenting this "communication lifting" transformation we show by an

example why the cyclic structure only persists for such a short time during reduction.

The simplified program of figure 4 is sufficient to illustrate that the reduction behaviour of a
cyclic process network can be split into two different phases. In the first phase a cyclic
structure develops the spine of all infinite lists until the elements required by the main
expression are produced. During the second phase the required elements are evaluated in an
acyclic graph. As all computations of the physical model still remain to be done, the second
phase requires much more time to reduce than the first.
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In practice, a program like the tidal model, will be run to compute several snapshots of the tides
during the evolution of the simulation. A main expression with this behaviour would be too
complicated for a detailed presentation of the reduction process. Therefore we assume a
simplified main expression (represented in figure 4 by Select4) that only selects the fourth
element of the left stream (a). This will result in the computation of the left part of the state of
the model after four simulated time slices. Representing the matrix-update operations inside F
and G by Mf and Mg, the rewrite rules corresponding to figure 4 are the following:

Start — Select4 a
a: Cons b ¢
b: mleft
c: Fad
d: Cons e f
e: mright

f. Gda

F (Cons x xr)(Cons y yr) — Cons b c
b: Mf x vy

c: F xryr

G (Cons x xr)(Cons y yr) — Cons e f
e: Mg x vy
f: G xr yr

Select4 (Cons x1 (Cons x, (Cons x3 (Cons x4 rest)))) — X4
Figure 5: The rewrite rules corresponding to figure 4

The program is started with an initial graph consisting of the single node Start. Rewriting the
start expression once, results in the graph Select4 a. In this graph the function Select4 will
select the fourth element of the list rooted at node a. The subgraphs mleft and mright represent
respectively the left- and the right part of the matrix containing the initial state of the model.

To rewrite Select4 a, according to the functional strategy, means that the graph at node a will
have to be reduced until it matches the required redex pattern of four Cons nodes. During this
process the sub-graphs that match the variables x;, x,, x; and x, are not further reduced. We
show the reduction steps, in functional order, that have to be performed to obtain the required

matching of the graph rooted at a.

The initial graph in figure 6 is the graph rooted at node a, where all nodes have been provided
with a subscript zero. To the right of the initial graph the first five reduction steps are
illustrated, which are necessary to match a¢ to the four Cons nodes in the redex pattern of
Select4. These five reduction steps constitute the first phase of the reduction process, during
which the spines of the lists are developed.
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A rewrite action is indicated by a dashed arrow, and the rewritten top node plus all new nodes
introduced by the rule are listed directly to the right of the arrow. The new nodes have to be
provided with unique labels. The identifiers for new node labels are derived from the identifier
in the rule plus a subscript. When a redex is rewritten the node label is not repeated at the right

side of the arrow, to stress the fact that it is the same node as the one to the left of the arrow.
For instance c(). F' a dg — Cons b] c] means that the node F at c() is rewritten to a Cons

node and its pointers are redirected to the (new) nodes at b7 and c;.

initial graph steps 1 and 2 steps 3 and 4 step 5
ag: Cons bg cp
bo: mlieft
co: Fagdg — Cons bq c1
b1: Mf bg eg
do: Conseq fp c1:Fcgfgp — Cons b2 c2
eQ: mright bo: Mf bq eq
for Gdpag — Cons eq fq c2:Fcg f4 — Cons b3 c3
e1: Mg eg bg ba: Mf by e2
f: Gfgcg — Cons ep fo c3:F co fo
e2: Mg eq b1
for G f1 ¢4

Figure 6: Rewriting the program of figure 5 in linear notation.

The initial graph contains two rewritable subgraphs at the nodes c( and f(). The node at c() is an
occurrence of the rule for F, because both its arguments (a(), d() are applications of the Cons

constructor. For the same reason the node at f() is an occurrence of the rule for G.

The functional strategy will try to develop a spine of four Cons nodes starting from node ay), to
match the redex pattern of the select4-rule. The node at a is already a Cons node, so the
strategy first rewrites the redex at c( to obtain the second Cons node needed for the match.
After rewriting c(), the next redex that has to yield a Cons node is cj. However, during the
matching of the F-rule to cj, a recursive rewrite of the redex at f() will occur, to convert this

node (fp) into a Cons node, as required by the pattern of F. The rest of the reduction steps

follows the same order as the first three steps.

The graph rooted at a() that is obtained in figure 6 after five reduction steps is redrawn in

figure 7, using a graphical notation, to illustrate some characteristics of this graph. Three
different structures can be distinguished in figure 7. The first is the beginning of the spine of the
infinite list at ag), (the nodes a(), c(, c¢j and c2). The second structure is an acyclic graph,
specifying a communication pattern between the matrix update operations Mf and Mg. The
third part of the graph is a cyclic structure involving F" and G, that forms a generator for both

the spine and the communication pattern.
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a0: Cons
cO Cons
cl Cons
AN
c2 Cons
\
c3:F
b3 Mf fl: Cons
\ ¥\ a
b2 Mf e2:M 2: G
bl: Mf

b0: mleﬂ><_7£/e0mrlght_>

Figure 7: The program graph after five reduction steps

Because the spine at a() consists of four Cons nodes, the rewrite rule for Select4 can now be

applied. The result of this rewrite is shown in figure 8.

root: Mf
b2: Mf e2: Mg
bl: Mf el: Mg

Figure 8: The second phase of the reduction process

The generator has disappeared and the cycles with it. Just the communication pattern between
the matrix-update functions is left behind. The graph, however, still represents a considerable
amount of work. The functions Mf and Mg contain quite complex updating actions on the
matrix of the tidal model. Five applications of these functions remain to be reduced. The
number of reduction steps involved dwarves the six steps that were required to obtain the graph
of figure 8. The graph in figure 8 also suggests a distribution of the reduction work over two
processors, where the functions Mf are evaluated on one processor and the functions Mg on the

other.

4.2 Communication lifting of the example program

The graph reduction example in the previous section illustrates that cyclic structures in a
process network, appear to be generators for a possibly complex but acyclic communication

pattern between calculations contained in the processes. The mechanism of lazy evaluation first
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develops the communication pattern and then discards the generators before evaluating the
major part of the computations. The question arises whether it is possible to construct an
acyclic generator for these patterns in a systematical way. A general method to obtain an
acyclic program that is equivalent to a process network is presented in the next section. The
idea behind the method is illustrated in figure 9:

B e

(@& (& b

Figure 9: Communication lifting

The left hand side of figure 9 shows three processes P, P2 and P3. The arrows between the
processes represent streams that model the communication between processes. One can think
of a process as being composed of two parts (the white and shaded areas in figure 9). One part
(white) deals with the incoming and outgoing streams. Data is selected from the input streams
and passed to a second part (shaded) where the actual calculations are performed. The obtained
results are combined into the output stream by the first part again. Under certain conditions it is
possible to isolate the communication parts of P/, P2 and P3 and combine them into a single
process P. The calculation parts C/, C2 and C3 remain unchanged. They are called by P as
normal function applications involving no streams. Because the communication that originally
occurs between PI, P2 and P3, now takes place inside a single process on a higher level, we
have called the transformation method communication lifting. The processes PI, P2 and P3
have to meet certain synchronisation constraints before communication lifting can be applied.
Processes that fulfil these conditions are called synchronous processes. The definition of

synchronous processes and the lifting transformation are described in the next section.

In the remainder of this section we present the acyclic program for the simplified tidal model
(see figure 10) that is obtained by communication lifting of the cyclic version (of figure 5). We
show that reduction of this program produces exactly the same computational graph as with the
cyclic version (namely the graph of figure 8). This demonstrates that communication lifting

indeed produces an acyclic generator for the program of figure 5.

Start — Select4 a
a: Proc b c
b: mleft

c: mright
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Proc x y — Cons x a
a:Proc b ¢
b: Mf x y
c:Mg vy x

Figure 10: The acyclic rules corresponding to figure 4

Although the lifted version looks simpler than the original cyclic generator (figure 5), this is not
the case for larger programs like the complete tidal model. When communication patterns in
these type of applications grow more complicated, the lifted version becomes difficult to
understand. This is because the knowledge of how processes communicate is hidden in the
order of the many parameters that have to be passed to the single recursive function that is

obtained by communication lifting (like x and y in Proc ).

Like in the previous section, rewriting of the initial graph Start produces the graph Select4 a .
Four subsequent reduction steps generate the spine of a until the four Cons nodes required by

Select4 are developed:

ag: Procbgcg — Cons bg aq

bo: mleft aq: Proc bq c1q — Cons b1 a2
co: mright b1: Mf bg cg a: Proc bp c2 —  Cons b2 a3z
c1: Mg cqg bg bo: Mf bq c1q a3:Proc b3 c3 — Cons b3 a4
c2: Mg cq b1 ba: Mf b c2 aq: Proc by c4
c3: Mg c2 bo bg: Mf b3 c3
c4: Mg c3 b3

The next reduction step is the application of the rule for Select4. It rewrites to the graph rooted
at b3, the fourth element of the spine. The reader may verify that the graph below node b3 is

homomorph with the graph of figure 8.

Using the sandwich rule of section 2, the lifted program of figure 10 can be mapped onto the

job-based parallel reduction model. The resulting program is shown in figure 11.

Start — Select4 (Proc mleft mright)
Proc x y - Cons x (Sandwich Proc (Mf x y) (Mg y x))

Figure 11: The sandwich version of the simplified tidal model

The Sandwich strategy first nomalises x and y, then dispatches the jobs Mf'x y and Mg y x for

parallel evaluation and finally combines the job-results into a new application of Proc.

A transformation into a parallel sandwich version is impossible for the original program of

figure 5, because the right hand side of the Start-rule is a cyclic graph.
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5 Communication lifting

When the right hand side of a rewrite rule contains several (needed) coarse grain subgraphs, it
is possible to obtain a parallel version of this rule using the sandwich function of section 2.
However, when these coarse grain subgraphs are contained within a cyclic structure the method
fails, because the arguments of the sandwhich rule have to be independent function applications
(jobs). The previous section suggests that in some cases a cyclic rule (i.e. the right hand side
graph contains a cycle) can be transformed into an acyclic rule that produces the same result.

The acylic rule can be transformed into a parallel version using the sandwich function.

In this section we present the communication lifting transformation that can be used to obtain
an acyclic rule in case the (cyclic) right hand side graph is a synchronous process network. We
advocate a programming methodology in which an application program is first developed using
streams and synchronous processes, because this approaches physical reality and our way of
thinking about physical problems. Next, the program is transformed by communication lifting.
In the resulting program coarse grain subexpressions are annotated by the programmer, yielding
a version of the program that can be efficiently executed on our parallel reduction model that

only supports coarse grain strict argument parallelism.

Apart from making a stream based program suitable for strict argument parallelism,
communication lifting can also be used to transform a (cyclic) graph of communicating fine-

grain processes into a single application of one (acyclic) coarse-grain process.

In this section we describe communication lifting as a set of transformation rules operating on a
CLEAN-graph and a CLEAN-rule-set. Throughout the section we use the program of figure 5

to illustrate the formal description of the transformation rules.

A synchronous process is defined as a function that operates according to one of the following

models (henceforward the dot is used as an infix notation for Cons):

Fs(x1.xr1)... Xn.Xrm) — (@ S X1... Xn) - F (f s Xq... Xp) Xrq.... xry (S1)

where s is the state of the process F
(Xj . xrj) areinput streams to F
g is a function that computes the next output element of F

f is a function that computes the next state of F

In (S1) the process F rewrites to a pair, consisting of the application of an output-generating
function g, followed by a recursive invocation of F. In the recursive call the new state of the
process is computed by a state-transforming function f. The essential property of a synchronous
process is that it consumes one element from all the input streams to produce one element of
the output stream. This does not mean that the consumed elements are all needed in the
computation of the output element. Input elements might be skipped during the execution of a

SyI’lChI'Ol’lOU.S process.
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Also processes without a state paramenter, according to model (S2) are considered as
synchronous processes:

F (x1.xrq)... Xp.Xm) — (9 X1 ... Xn) - F xr1....xrq (S2)

Although model (S§7) and (S2) seem rather restricted, they can be used to describe a large class
of application programs. In principle all grid-based computations occurring in mathematical
models, image processing, computer graphics, VLSI design, discrete simulations etc, can be
modelled as a collection of synchronous processes. Using communication lifting and sandwich
transformations, grain-size and parallelism can be controlled in a general, application
independent way. As an example we show in section 6 the transformation of the tidal model
and a simple simulation of digital hardware.

5.1 Application requirements

The application program has to meet four requirements (S3-S6) before communication lifting
can be applied. These requirements are specified §5.1.1 through §5.1.4.

Communication lifting is applied to a set of rules FN and a possibly cyclic subgraph GR. This
subgraph is (part of) the right hand side of a rewrite rule.

5.1.1 Syntactical form of FN

The syntactical form of the definitions in FN is defined by (S3). There are m processes in (S3),
from which n processes are according to model (S7) and the rest according to model (52)

FN:: Fj sp (Xj1 . xri1) (X2 . xri2) ... (S3)

- (9i si xi1 X2 ...) - Fi (fi si xj1 xj2 ...) xriq xrig.. (i=1..n)

Fi (Xi1 - xri1) (X2 . xri2) ...

— (9i xj1 xi2 ...) - Fj xri1 xri2 .. (i=n+1..m)
In a rule each variable identifier must be different from variable identifiers occurring in other
rules. This is because the communication lifting transformation performs textual substitutions
that are global with respect to all definitions in FN. In (S3) uniqueness has been achieved by a
double subscript for the head- and tail variable of each stream. The first subscript indicates the
rule number, whereas the second subscript enumerates the stream variables in each rule.
5.1.2 Syntactical form of GR
The interconnections between the processes Fj in FN are specified by GR. This subgraph has to
consist of labeled applications of the following form:

GR:: aj:Fj tj bj1 bj2 ... (i=1..n) (S4)
aj : Fj bj1 bjo ... (i=n+1..m)
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The actual stream arguments b;jj in GR have to be node labels. We require that each stream is
produced by a labeled application of a synchronous process. Note the use of s; and #; for the
formal, respectively the actual state-argument of Fj. Similarly x;; and b;; denote the formal,

respectively the actual stream-arguments of F7j.

In GR a connection exists between two processes Fj and Fj if Lk | bjk = aj. In that case we say
that the output stream of Fj is connected to the Kth input of process Fj. The Kth iput of

process Fj is called unconnected if [j | bjk # aj. The values of unconnected inputs are

determined by the right hand side graph from which GR has been selected.
example:

As an example we derive the rule set FN and the graph GR corresponding to the cyclic right
hand side of the Start-rule in figure 5. In a first step we neglect the syntactical form and merely
identify FN and GR (see figure 12). In a second step (figure 13) we bring the definitions in the

required syntactical form.

FN::
F (x.xr) (y.yr) - Mf x y . F xr yr
G (X.xr) (y.yr) > Mg xy . G xr yr

GR:: Start — Select4 a

a:Cons bc; ccFad b: mleft

d:Cons e f; .G d a e: mright

Figure 12a: FN and GR of the Start-rule Figure 12b: The remaining part of the
of figure 5 Start-rule

In GR of figure 12a the labels b and e are unconnected. They are defined in the remaining part
of the Start rule (see figure 12b) and will become the external inputs for the transformed
program. The graph GR does not yet satisfy the constraints outlined above because the two
streams at label a and b are not produced by a synchronous process. However, we can replace

the applications of Cons by applications of a Cons-process, which we define as:
Cps (x.xr) — s . Cp x xr

The definition of Cp complies with the model of a synchronous process and if x is a list it holds

that Cp s x = Cons s x.

Figure 13 shows the example program again, where Cons has been replaced by the Cons-
process and where all rule definitions in FN and applications in GR have been subscripted as
prescribed by (S3) and (54):



152 Parallel Graph Reduction for Synchronous Process networks chap VII

FN:: Cp1 s1 (X1 .xrq) — s1 . Cp1 x1 xrq
Cp2 s2 (x2.xr2) — s2 . Cp2 x2 xr2
F3 (x3.xr3) (y3.yr3) — Mf x3 y3 . F3 xr3 yr3
G4 (x4.xr4) (y4.yrq)— Mg x4 y4 . G4 xr4 yra
GR: a1:Cpq b c3; c3: F3 aq do
do: Cp2 e f1; fg: G4 d2 a1
Figure 13: The simplified tidal model satisfying the constraints for FN and GR
5.1.3 Correspondence between GR and FN

There should be a one-to-one correspondence between application nodes in GR and rule
definitions in FNV:

Oi O 1.m | (aj: Fj....) O GR o Fi O FN (S5)

If GR contains multiple applications of the same function, then copies of the corresponding
function definition (but with a different subscript) have to be added to FV.

example:

Note that in figure 13 both Cons applications have been replaced by applications of two distinct
functions Cpj and Cp), whereas the definitions for Cp; and Cp) are identical (the Cons-

process). Communication lifting as described in the next sections, requires that all nodes in GR
are applications of distinct functions in FN. The duplication of function definitions caused by
this requirement has no serious consequences because it is temporary. Later FN will be
replaced by a single function definition after communication lifting.

5.1.4 One output application node

In GR one labeled application (agys : Fout Sout bout,1 bout,2 ---) has to generate the output
stream of the group of processes described by FN and GR:

OoutO1.m | aout : Fout Sout Pout,1 bout,2 --- is the output of GR (S6)
The output stream of GR is determined by the right hand side graph of the rule from which GR

has been selected. If more streams represent the output of the group then an extra process has

to be added to the group that merges the output streams into one stream.

example:

Figure 12b shows that variable a in the expression (Select4 a) is no longer defined after GR has
been isolated for transformation. Therefore node a in GR (which is node aj in figure 13)

becomes the output stream. Thus, for the example program: F,r = Cpj and agyt = aj.
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5.2 The description of communication lifting

Assuming that a rule set FN and a cyclic subgraph GR satisfy the constraints outlined in the
previous section, communication lifting can be defined as a set of syntactical transformations to
be applied to FN and GR. The result is that FN will be replaced by a single acyclic function
definition G, whereas GR will be replaced by a single application of G. We describe the
transformation in six steps 7/ to 76 :

5.2.1 The calculation of the communication matrix - step T1

Instead of directly referring to stream connections in GR, the description of communication
lifting uses a two dimensional matrix C, which we call the communication matrix. All

connections in GR are represented by C. An informal definition of C is (referring to (5S3) and
(54)):

Cij={xjk | the kth input of Fj is connected to the output of Fj }

When the k" input (actual argument) of Fj is connected to the output of Fj the matrix element
Cjj contains the head-variable x;i of the k' formal argument of Fj. The matrix element Cj; is a

set because several inputs of Fj may be connected to the output of Fj.

A formal specification for C is given by 7'/ (referring to (S3) and (54) ):

-T1 Oijod1.m
Lk 1.. the number of stream arguments of F;

iff GR contains two nodes aj, aj such that:
aj: Fj tj bjq1 bj2 ...
aj: Fj tj bj1 ... bjk-1 aj bjk+1 -
and  the definition of Fjin FNis:
Fi sj (Xj1 .xrj1) (Xjk.xrjk) — gj - - Fj
then xjk O Cjj
The specification (77) assumes that F; and Fj syntactically comply with model (S7). Slight

variants of (7/) have to be used when rules of model (52) are involved.

example:

When (T1) is applied to the example program of figure 13, we have e.g.: C37 = {x]} because

of the connection between £3 and Cpj in GR (connection in bold face):
a1: Cpq1 b c3
c3:F3 a1 d2

and the corresponding definition of Cpj in FN :

Cp1 s1 (xq1.xr1) — s1 . Cp1 xq1 xrq
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The output of the application c3: F'3 aj d2 is second actual argument of CPj. This argument
corresponds to the second formal argument: (x;.xrj) in the definition of Cpj. Therefore,
according to (71), x] is a member of C3].

Similarly, we can derive the other non-empty elements of C :
C3,1 ={x1}, C4,2 = {x2}, C1,3 = {x3}, C1,4 = {ya}, C2,3 = {y3}, C2,4 = {x4}
5.2.2 The transformation of FN - steps T2 through T4

The communication lifting transformation finds a single rewrite rule G, which has the same
behaviour as the connected set of processes defined by FN and GR. The rewrite rule for G is

constructed by applying textual transformations to the following rule-pattern:
G State Input-streams — Output . G New-state Stream-tails

The skeleton of G contains five meta-variables: State, Input-streams, Output, New-state and
Stream-tails. We use the notation G/E j/E?] to denote that in the rule for G each occurrence of

E) is textually replaced by E7.

-T2 State is replaced by a tuple consisting of the formal state arguments of the processes F;
to F in FN (in (S3) the functions Fj to Fy are according to model (S7/) and have

formal state arguments):

G[ (s1-52.....8n) / State]

New-state is replaced by a tuple consisting of the state-transforming expressions of the
processes F'jto F in FN :
GI[ (f1 s1 x11 x12 ...).(f2 s2 x219 x22 ...). ... .(fh Sn Xp1 Xn2 ...) / New-state ]

In FN there is one process Fyy that produces the output of the group (see §5.1.4).

Output is replaced by the output generating expression of process Fyy:

G [ dout Sout Xout,1 Xout,2 --- / Output ]

-T3  In both expressions for New-state and Output, all variables that are involved in

communication have to be replaced according to the following rule:

Ui, jd1.m and Ok 1. the number of stream arguments of F;
if Xjk O Cjj
then  G[ (gi si Xi1 Xi2 -.) / Xjk ]

In other words: each variable in New-state and Output that corresponds to a stream
connection between process Fj and Fj (i.e. xjp U Cjj) is replaced by the output

generating expression taken from the definition of process Fj in FN.

The replacements described by 73 have to applied repeatedly until no more variables

can be replaced. Common subexpressions that may arise during the substitutions must
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be replaced by a single labeled expression. In particular cyclic connections would

otherwise result in an infinite sequence of textual substitutions.

-T4  Finally the meta-variables Input-streams and Stream-tails are to be replaced by a list of
arguments. These lists contain the stream-arguments in FN that correspond to
unconnected inputs in GR: The order of the elements in the argument lists has to be the

same for both replacements.

G [ (argument-list of all (x j k. xrjk) such that XjkUOCjj) / Input-streams ]
G [ (argument-list of all xr j k such that XjkUOCjj) / Stream-tails ]
where i, | 1..m andk  1.. number of stream arguments of F;

example:

To illustrate the rules T2-T4 we construct the function G for the example program of figure 13,
for which we have already derived the communication matrix C.

T2: In figure 13 only Cp; and Cp? are according to model (S7). Thus, referring to (S3):
n =2 and m = 4, which yields the following replacements following (72):

G[(s1.s2) / State]
G[(x1.x2) / New-state ]

In §5.1.4 we have derived that Fy,;; = CpJ. The output generating expression of Cpj is just the
variable s 7, so Output is replaced by s7.

G [s1 / Output]

Applying the replacements of step (72) to the skeleton of G, we obtain the following

intermediate result;

G (s1 . s2) Input-streams — s1 . G (x1.x2) Stream-tails

T3: The next step in the transformation (73) performs a number of substitutions on the

variables in the expressions for Output and New-state that have been obtained so far. In the
example only the two variables in New-state have to be replaced. Because x; [ C37 , rule (73)

states that x; has to be replaced by the output generating expression of /'3, which is Mf'x3 y3.
Similarly x) is replaced by Mg x4 y4 :

G[ (Mf x3 y3).(Mg x4 y4)) / (x1.%x2) ]

However, the variables x3, y3, x4 and y4 all occur in the communication matrix C. So
according to (73), they have to be replaced again. For example because x3 [J C73 and the
output generating expression of Cpj is 57, we have to replace x3 by s7. Performing similar
substitutions for y3, x4 and y4, we obtain:

G (s1-s2) Input-streams — sq . G ((Mf sq s2).(Mg s2 s1)) Stream-tails
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T4: In the next step of communication lifting (74) the meta-variables Input-streams and
Stream-tails are replaced. To perform 74 we have to find the set of all formal stream arguments
(xjk - xrjk) in FN that correspond to unconnected (actual) streams in GR, i.e. xji U Cjj. In case
of the example program this set turns out to be empty (see section 6 for an example where the
set is non-empty). Therefore the meta-variables Input-streams and Stream-tails are replaced by

empty argument lists, which results in the final definition for G:

New-FN:: G(s1-s2) —» s1 .G ((Mf s1 s2).(Mg s2 s1))

We have introduced the name New-FN to indicate that the definition obtained for G replaces all
definitions of FNV.

5.2.3 The transformation of GR - steps TS and T6

Communication lifting as described so far, replaces the set of function definitions FN by a single

definition G. What remains to be done is to transform the subgraph GR into a single application
of G.

In GR there is exactly one node (agyy) that produces the output stream of the subgraph. We

replace this node by an application that is constructed from the left hand side of the definition
of G obtained in the previous section. The construction replaces each formal argument of G by
actual arguments taken from GR, according to the following rules (75) and (76):

-T5 Ok O 1.n:

New- FN ::G(s,..8,...5,)... » .0
00 New-GR:: agyt: G(s1... tk -.-sp) ...
GR:ay, :F it b,b,.. 0

-T6 (0i,jO01..m and Ok O 1..number of stream arguments of Fj ) | Xjk U Cij :

New= FN ::G(...)...(Xj, X0y ). » .00
O New-GR:: :G(...) ... bj
GR:a;:Fitb,.by.. H ew aout: G (--.) ik ...

jti%n
Rule (75) describes how in New-GR each formal state variable s; of the definition of G is
replaced by an actual state argument ¢ from GR. The bold face letters help to identify which

variables are replaced and where to find the actual argument. As before, the numbers » and m in
the quantisation are defined in (S3). Rule (76) specifies how each formal input-stream of G is

replaced by an actual stream argument from GR. Finally, the graph New-GR, consisting of the
single node agyz, replaces the old graph GR.

example:
To complete the transformation of the example program we apply rule 75 to the subgraph GR
of figure 13. We know already that a,,r = a for the example. This node will be replaced by an

application of G. To construct the application of G we take the left hand side of its definition:
G (s] . s2) and replace the state variables by actual arguments in GR. Applying rule (75) in two

steps yields:
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New- FN ::G(S,.5,)... » ...
GR:a, :Cpbc,
d, :Cp,ef,

O New-GR:: aq1: G (b. s2)

I |

New- FN ::G(s,8,)... » ...0
GR ::a, :Cp,bc, ED New-GR:: a1: G (b. e)
d, :Cp,ef, H

Rule (76) has no effect in the example, because G has no formal input streams (i.e. the

quantisation in (76) is void). The application that replaces GR therefore remains:

New-GR:: a1: G (b.e)

The results obtained for New-FN and New-GR can now be recombined with the remaining part
of the Start-rule of figure 12b. This yields the final result of communication lifting applied to
the example program (of figure 5):

Start — Select4 a
a: G (b.e)
b: mleft
e: mright
G (s1.82) — s1 .G ((Mf s s2).(Mg s2 s1))

Figure 14: The final result of communication lifting of the example program of figure 5.
5.2.4 Correctness of the communication lifting

Apart from the pairing of the state variables, the names used for these variables and some extra
labels, the program of figure 14 is identical to the solution presented in figure 10. After a few
reduction steps the program of figure 14 reduces to the same graph as shown in figure 8 and

thus computes the same output as the original program of figure 5.

It is difficult to prove the correctness of communication lifting, because the contents of the
communication matrix is in general unknown. For a given program the correctness of
communication lifting can be proven by showing that the output stream of the transformed
program is identical to the original output stream (there is always a single output stream, see
§5.1.4). Such a proof can be constructed by induction on the elements of both streams. In the
example program one has to prove that a: G (b. e) of figure 14 is identical to a: Cons b ¢ of

figure 5.

5.3 Sandwich transformations

A synchronous process G that is the result of communication lifting of a group of processes FN

and a subgraph GR, can be mapped onto the job-based parallel reduction model. The output-
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generating expression and the state-transforming expression of G are well suited for sandwich
annotation. Both expressions only contain applications of the functions f; and g; of the original

processes in FN. In principle all needed applications of f; and g; are possible candidates to

become part of a sandwich expression. The programmer has to select the coarse grain needed
expressions and isolate them by a transformation. To give an impression of such
transformations we use the function G of figure 15. This is an example of a function generated
by communication lifting that is simple, but sufficiently complex to illustrate relevant aspects of
the sandwich transformation and the retention of results (the latter subject is discussed in the

next subsection):
G (s1-s2) — a. G (f1 s1 b).(f2 s2 a))
a:g1 s
b:g2 s2
Figure 15: A typical function generated by communication lifting

First we show how the sandwich rule has to be incorporated. Depending on the grain size of

the various calculations there are three possible transformations:

G (s1-s2) — a . G (Sandwich Cons (f1 s1 b) (f2 s2 a)) (SW1)
a: Head c
b: Tail c
c: Sandwich Cons (g1 s1) (92 s2)

G (s1-s2) — a. G (f1 s1 b).(f2 s2 a)) (SW2)
a: Head c
b: Tail c
c: Sandwich Cons (g1 s1) (92 s2)

G (s1-s2) — a . G (Sandwich Cons (f1 s1 b) (f2 s2 a)) (SW3)
ai g1 $1
b: g2 s2

The first transformation is appropriate when the grain size of both the output- and the state
calculations is sufficiently large to justify parallel evaluation. The sandwich annotation always
requires a main function operating on the received job-results. We use the Cons constructor for
this purpose. This means that if one of the paired (Cons-ed) results is required, it has to be
selected with the Head- or Tail-function. In (SW1) this occurs at node a and b to select the
results of (g7 s7) and (g2 s2). Unpairing the result of the other sandwich expression is not

necessary, because a Cons-ed pair happens to be needed as the argument to G.

If the computation of the next state does not outweigh the communication cost involved in the
transmission of the jobs (f7s; b) and (f2s2 a), these functions need to be reduced

sequentially, as is illustrated by transformation (SW2).
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The third transformation applies when most of the work is involved in evaluating the next state.
This is generally the case for loosely coupled processes, like the tidal model and the hardware

simulation of section 6.

In most of these applications the state is represented by a large data structure. The parallel jobs
as they are annotated in (SW3) contain the states s; and s2. Each time when both jobs are
dispatched for parallel evaluation, all data representing the states is also transmitted. This may

cause an unacceptable amount of communication.

Inspired by the execution pattern of (SW3) we have designed an extra annotation that can be
used in conjunction with the Sandwich annotation, to avoid the repeated transmission of states.
The annotation has been called the own-annotation because it causes processors to retain their
(own) result. The own-annotation is described in detail in [VRE88]. Here we only give a short
explanation and show how program (SW3) has to be transformed again, to profit from the

retention of function results, caused by the own-annotation.

5.4 The retention of results

Figure 16 gives an impression of the effect of the own-annotation, implemented on a local
memory architecture consisting of two processors. Suppose that during the evaluation of a
program in processor-1, a sandwich expression (not shown) causes the application (fx) to be

transmitted to processor-2, where it is rewritten to own x (figure 16a).

fx - own x

Processor 1

. . result of
flx X g"x (g X)

Processor 2

a b c d

Figure 16: Retention of x using the own annotation

Reduction of the own-application in processor-2 results in the retention of the graph x, whereas
a virtual value "x" is returned to processor-1 (figure 16b). This virtual value can not be
considered as a regular pointer to x. Dereferencing "x” in processor 1 results in a fatal error. A

virtual value may only be used in another sandwich expression. Suppose that an application
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"n,.n

(g "x") is part of a subsequent sandwich expression in processor-1 (again not shown) and as a
consequence has to be transmitted to a remote processor. The application (g "x") will then be
sent to the same processor as where x is retained. Upon arrival in processor-2, the virtual value
"x" is replaced by the retained x (figure 16¢). If no further applications of own occur the result

of (g x) is normally returned to processor-1 (figure 16d).

Considering the definition of G in (SW3), it seems impossible to retain the state information s;
and s2 by the use of the own-annotation. The state has to be returned to G on each recursion
to compute (g7sj) and (g2s2). However, in many applications of type (SW3) these
computations only yield small results compared to the size of their input arguments s; and s).
Instead of returning the states s7 and s, it seems more appropriate to compute (g7 s7) at the

processor retaining s7, and to compute (g2 s2) at the processor retaining s2. Then, only the

relatively small results of these applications have to be returned.

The following transformation of (SW3), which we call the own-transformation, takes care of
computing (g7 s7) and (g2 s2) in the appropriate processor:

G ((s1.a).(s2.b)) (SW4)
— a . G (Sandwich Cons (f1' s1 b) (f2' s2 a))
f's x— (Own's1').g1 s1'
sq" f1 s x
fo'' s x— (Own s2') . g2 s2'
so" fo s x
The state tuple of (SW3) has been extended in (SW4) with the result of computing (g7 s7) and
(g2 s2). These computations are now part of the functions /7' and f2'. The latter two functions
still compute the next state, using the old f7 and f2, but the state is retained in the remote
processor by the annotation Own. Retention of the states is possible, because s; and s are

indeed nowhere used in the definition of G in (SW4). They are merely passed as arguments to
the applications of /7" and f2'. Thus if the implementation of own returns a virtual value, this

value will never be dereferenced in G.

6 Using communication lifting

The communication lifting method for synchronous processes is sufficiently general to be
implemented as an automatic development tool. Such a tool could take the definition of a
synchronous process network and transform it into a single synchronous process. The sandwich
transformations, however, cannot be easily automated, as they require knowledge of the grain-

size of computations.
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To demonstrate the proposed transformations as a programming method for the manual
construction of parallel programs, we will apply them to the tidal model introduced in section

4.1 and to a logic-level simulation of digital hardware.

6.1 Transformation of the tidal model

To present a more complex example of communication lifting we will transform the parallel
tidal model introduced in section 4.1, to obtain a mapping on the job-based reduction model.
Figure 17 illustrates the communication structure (GR) of the non-simplified version of the
program and introduces short unique names for the individual processes to obtain a reasonably

compact notation while applying the rules T1-T6.

Figure 17: The structure of the tidal model

The definitions in /N and the graph GR associated with figure 17 are presented in figure 18:

FN:: Fq1 s1 (x1.xr1) - s1. F1 xq9 xrq
F2 s2 (x2.xrg) - s2 . F2 x2 xrp
F3 (x3.xr3) - (93 x3) . F3 xr3
Fa (x4 .xr4) (v4.yra) - (94 x4 y4).F4 xr4 yra
F5 (x5.xr5) - (95 x5) . F5 xr5
F6 (x6 - xrg) - (96 x6) - F6 xre
F7 (x7.xr7) - (97 x7).F7 xr7
Fg (xg.xrg) (v8.yrs) - (98 xg ys).Fg xrg yrg
Fg (xg.xrg) (yg9.yrg) - (99 x9 yg).Fg xrg yrg
99 X9 Y9 - X9 . Y9
GR:: aq:Fq1 mleft a7 aq: F4 a1 a3 a7:F7 a4
az: F2 mright ag as: F5 ap ag: Fg a5 ag
a3: F3 a2 ag: Fg a4 ag: Fg a1 a2

Figure 18: FN and GR of the tidal model
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The rules F'3 to Fg specify the update calculations that are applied to the physical quantities. A
precise description of g3 to gg can be found in [VRE87]. The functions receive and generate
streams of matrices, without retaining any state information. The only two functions that
contain a state are F; and F'». They are Cons-processes as discussed in section 5.1. In GR the
functions F; and F) are applied to their initial matrices: mleft respectively mright. Process Fg

merges the output of the left-hand side with that of the right-hand side into a single output
stream. The node ag has to be considered as the output stream of GR (i.e. a,y,; = ag).

We will first lift the processes of figure 18 into one single synchronous process. Next a
transformation of type (SW3) yields a parallel program consisting of two coarse grain jobs.
Application of the communication lifting steps T1-T6 proceeds as follows:

T1:  The communication matrix corresponding to GR in figure 18 contains the following

non-empty elements:

C14 = {x4}C19 = {x9},C23 = {x3},C25 = {x5},C29 = {y9},C34 = {vya},
C46 = {x6},C47 = {x7},C58 = {x8},C68 = {yg8}, C71 = {x1},Cg2 = {x2}.

T2:  From figure 18 it follows that n = 2, (f; sy x77 x12...) =x1, (> 52 X271 X227 ...) = X2, and
we have assumed thatF,,; = F9. Therefore (72) yields the following replacements:

G[(s1.s2) / State]
G[ (x1.x2) / New-state ]

G[ (99 x9 yg) / Output]

T3:  The contents of communication matrix C specifies the following replacements that have
to be applied repeatedly to the expressions for Output and New-state:

X1 — g7 %7 X2 — 98 X8 Y8 X3 — 82

X4 — 81 X5 = 82 X6 — 04 X4
y4

X7 — 04 X4 Y4 Xg — g5 X5 X9 — 81

y4 — 93 x3 y8 — 96 X6 yo — 82

During the replacements in the expression for New-state a common sub-expression arises and

shared using label a:

New-state - (x1.x2)

- (97 x7)-(98 X8 y8)

- (97 a)- (98 (95 s2) (96 @)
a: (94 x4 y4) - a: (94 s1 (93 x3))

- a: (94 s1 (93 s2))

In the last step of rewriting Output the definition of gg is used:
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Output — (99 x9 Y9)
- (99 s1 s2)
- (s1.s2)

T4:  Because all variables xj; of the processes F; are contained in matrix C, the meta-

variables Input-streams and Stream-tails are replaced by the empty list of arguments, resulting
in the following single rewrite rule for the tidal model:

G (s1.52) — (s1.82). G ((g7 @) - (98 (95 s2) (96 2))
a: (94 s1 (93 s2))
TS5 and T6:  Replacing the formal arguments s; and s, of G by their corresponding actual
arguments mleft and mright in GR yields the single application node that replaces GR:

ag: G mleft mright

The application at ag specifies a stream of matrix pairs that represent the state of the tidal
model at successive time steps. A main expression, steering the program, may select a subset of
these pairs to be printed.
From the tidal model it appears that the functions gy, g5, g7 and gg perform a lot of
computations. A transformation of type (SW3) can be applied to G to generate parallel jobs for
the applications of g7 and gg:
G (s1.s82) — (81.82). (G ¢)

c: Sandwich Cons (g7 a) (g8 (95 s2) (96 a))

a: (94 s1 (93 s2))
The Sandwich strategy will first sequentially reduce the arguments a, (gs5s2) and (g5 a) to
normal form, before dispatching the jobs (g7 ...) and (gg...). In this sequential evaluation we

observe again the presence of two independent coarse grains of computation: the application of
g4 and gs. The possibility to reduce these two applications in parallel too, leads to the final

parallel version of the tidal model:
G (s1.52) — (s1.82). (G )
a: Head b

b: Sandwich Cons (g4 s1 (93 s2)) (g5 s2)
c: Sandwich Cons (g7 a) (gg (Tail b) (g a))

Still a transformation of type (SW#4) has to be applied in order to profit from the retention of the
large state matrices (s; and s>) in their respective remote processors. This transformation has
been elaborated in [VRE88] where the version of G derived here, is considered as a given
source program to be transformed. A performance figure of the transformed parallel tidal model
on our experimental machine is presented in [HARSS].



164 Parallel Graph Reduction for Synchronous Process networks chap VII

6.2  Transformation of a digital hardware simulation

The simplified tidal model of figure 4 consists of two coarse grain synchronous processes
without state information. We now show the transformation of a program where all processes
contain state information and represent fine grain calculations. This program simulates digital
hardware, using synchronous process definitions for the elementary components and "glueing"
those components together with streams. Starting with the specification of a nand-gate as a
synchronous process, a two-stage edge-triggered flipflop (D-type) is constructed. Assuming the
flipflop has a sufficiently coarse grain size, we transform the stream definition of a shift-register

based on these flipflops into a job-based parallel version.
d.dr

o
:
X

._>
) ()
Figure 19: A stream definition of a D-type flipflop

The definition of a 2-input nand-gate with a unit time delay as a synchronous process, is as

follows:

Ns (x.xr) (y.yr) — s.N(f xy)xryr
fxy — Not (And x y)

The state of the nand-gate implements the delay of such a digital circuit. The definition of N
shows that the application of the nand-function on the input elements x and y is first transferred

into the internal state, to be delivered as an output element on the next recursive rewrite of N.
A hardware description of a D-type flipflop, with two buffers Bj, B2 and ten nand-gates

numbered N3 to Nj2, can be translated into a stream-based definition of synchronous
processes (see figure 19).

The input stream elements are called d and ¢, according to the meaning of these streams as data
and clock. The two buffers B; and B) are both the identity process on streams with one unit
time-delay. They have no other function than to provide the power to drive multiple internal

circuits without presenting a multiple load to the outside world.

Figure 20 shows the function definitions (#NV) and the interconnection graph (GR) of figure 19.
Subscripts are used to obtain unique names for all variables. Note that in contrast to the

previous examples some of the actual arguments in GR are constants. They specify the initial
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states of the circuits when power is switched on. These initial states can be arbitrary chosen

from {0,1} denoting "false", respectively "true". (however, the program only works correctly if
s7 = Not(sg) and sj2 = Not(s]]) because the flipflop has no external "clear" input). The

illustration of figure 19 suggests that node ajj represents the output stream of GR. The actual

input streams to GR are called "data" and "clock".

FN:: Bq s1 (x1.xrq) - s1.B1 x1 xrq
B2 s2 (x2.xro) - s2 . B2 x2 xr2
Nij sj (Xj.xri) (i-yri) - sj. Nj (f xj yj) xrj yrj i=34,..12
GR: a1:Bq 0 data a5:N5 0 a3z a2 ag: Ng 0 ag ag
a2: B2 0 clock ag:Ng 0 a4 a7y a10: N1p 0 ag a7y
a3z:N3 0 a1 a1 a7:N7 1 ag as a11:N11 0 ag aq2
ag:Ng 0 a1 a2 ag:Ng 0 az a2 a12: N12 1 a11 a0

Figure 20: FN and GR of the D-type flipflop

Transformation of the twelve gates into one process Fp according to the communication lifting

rules T1-T6 runs as follows:

T1:  The communication matrix corresponding to figure 20 contains the following non-
empty sets:
C1,3 = {x3,y3} C35 = {x5} Cre = {ye} C10,12 = {y12}
C14 = {x4} Cap = {x6} C710 = {y10} C11,12 = {x12}
C24 = {vya} Cs57 = {y7} Cgo = {y9} C12,11 = {y11}
C25 = {y5} Ce,7 = {x7} Cg,10 = {x10}
C28 = {x8 v8} Ce,9 = {x9} Co,11 = {x11}

T2:  From figure 20 it follows that n = /2, which yields the following replacement for the

meta-variable State:
Fp[(s1.52....812) / State ]
Composing all state expressions of B}, B2, N3, - N7 into a tuple yields:

Fp[ x1.x2.(f x3 y3). (f X4 y4)-....(f x12 y12) / New-state ]

We have assumed that Fyur = Njj. In figure 20 the corresponding output generating

expression is just the variable 57 7, thus:
Fp[ s11 / Output ]

T3:  The communication matrix C yields the following replacements to be applied to the

expressions for Output and New-state:
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New-state [ s1/x3 s1/y3 s1/x4 s2/y4 s2/ys s2/Xx8
S2 /Y8 s3/ x5 s4 | Xg s5/y7 sg/ X7 s/ X9
s7/Y6 s7/y10 sg8/y9 sg/x10  s9/x11 s10/Y12
s11/x12  s12/y11 ]

which results in the final replacement for New-state:

Fp[ x1.x2.(f s1 81).(f s1 s2).(f s3 s2).(f s4 s7).(f sg s5).(f s2 s2).
(f sg sg)-(f sg s7).(f s9 s12).(f s11 s10) / New-state ]

T4:  The stream variables of FN not contained in the communication matrix are: x7 and x).

The argument lists of Fp thus become:

Fp[ (x1.xr1) (x2.xr2) / Input-streams ]
Fp[ xrq xr2 / Stream-tails ]

Replacing the meta-variables in the skeleton of Fp according to the results obtained in T1-T4,

yields a synchronous process for the flip-flop of figure 20:

Fp (s1.52.....812) (X1.xrq) (x2.xr2)
— s11.Fp a xrq xr2
a: x1.x2.(fs1s1).(f sq1s2).(f s382).(f sq s7).(f sg s5).
(f s2 s2).(f sg sg).(f sg s7).(f sg s12).(f s11 s10)

Figure 21: The lifted process for a D-type fliplop

TS, T6: To derive the single application that is going to replace GR we have to transform
the left hand side of the definition of Fp of figure 21. The formal state variables s; and the

formal stream arguments (xj.xrj), (x2.xr) are replaced by the corresponding actual
arguments in GR, yielding:

aq1: Fp (0.0.0.0.0.0.1.0.0.0.0.1) data clock

The preceding communication lifting of several nand-gates into one process definition of a
flipflop is an example of how to enlarge the grain size of many fine grain processes into one
coarse grain synchronous process. The coarse grain process can now be used in other
groupings, where parallel execution is required. We will illustrate this by designing a parallel
shift register based on the previously derived definition of Fp and performing another

communication lifting on a group of flipflops.

To use the flipflop in the construction of a shift register, we introduce the name ff for the state-

transforming function of Fp and the name gf for the output-generating function of Fp:
ff (51.52.....812) X1 X2 — X1.x2.(f s1 s1).(f 81 s2).(f s3 s2).
(f s4 s7).(f sg s5).(f s2 s2).(f s s8)-
(f sg s7).(f sg s12). (f s11 s10)
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of (s1.52.....512) — S11

The stream based definition of for example a two bit shift register is obtained by concatenating
two flipflops, sharing the same buffered clock and the same initial state:
FN:: Bq s1 (x1.xrq) — s1 . B x1 xrq
Fp2 s2 (x2.xr2) (y2.yr2) — (gf s2).Fp2 (ff s x2 y2) xr2 yr
Fp3 s3 (x3.xr3) (y3.yr3) — (gf s3) . Fp3 (ff s3 x3 y3) xr3 yr3

GR:: aq:B1 0 clock
ap: Fpo state data a1
a3: Fp3 state az a1

The output stream of GR is produced by node a; and the unconnected inputs are state, data
and clock. The communication lifting rules T1-T6 can be applied again to result in a lifted
process Sr that replaces FV:

Sr (s1.52-53) (X1 -xr1) (x2.xrg)
— (of s3).Sr (x1.(ff s2 x2 sq1) . (ff s3 (gf s2) s1)) xrq xr2

and an application that replaces GR:

aq: Sr (0. state . state) clock data
Subsequently Sr can be transformed into a job-based version following (SW3):

Sr (s1.52-53) (X1 -xr1) (x2.xrg)
— (df s3).Sr (xq.a) xrq xr2
a: Sandwich Cons (ff s2 x2 sq) (ff s3 (gf s2) s1)

To retain the considerable amount of state information of a flip-flop in the processor to which

the flip-flop will be allocated, a transformation of type (S#W4) may be applied:

Sr (s1.(s2.9dfs2).(s3.9fs3)) (X1.xr1) (x2.xr2)
— gfs3.Sr (xq1.a) xrq4 xr2
a: Sandwich Cons (ff' sp x2 sq) (ff' s3 gfs2 s1)

fff s xy — (Own a). (of a)
a: ff sxy

The sandwich annotation distributes the computation of the state-transforming functions ff* of
the flip-flops. The results of these computations consist of a new state and a new output-
element for each flip-flop. The new state is retained in the remote processors, whereas the

output-elements are actually returned to the shift-register process.
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7 Conclusion

The job-based model for parallel reduction mediates between pure graph reduction and string
reduction. The model allows efficient parallel reduction of certain application programs on
architectures without shared memory. In our approach parallel jobs have to be annotated by the
programmer. However, application programs written as process networks, containing streams
and cyclic structures, do not fit directly in this model. Three transformations are presented,
called communication lifting, sandwich- and own-transformation. Together they allow a subset

of applications written as synchronous process networks to be mapped onto the job-model

Streams and cyclic structures are frequently present in functional programs that model process
networks. Using a linear notation for graph rewriting, the reduction of such a program
demonstrates that cyclic structures disappear from the graph in an early stage. An equivalent

non-cyclic program is shown to yield the same computational structure.

Using the example as a guide-line, a general method is presented that allows the transformation
of a (cyclic) network of processes into one non-cyclic process. The method, called
communication lifting, is applicable to a network of processes that behave according to a
model, in which communication between processes occurs synchronously. For application
programs written according to this model, a set of formal transformation rules is presented

describing communication lifting.

For a synchronous process two other transformations are informally presented, the sandwich-
and own-transformation. These allow an efficient mapping of the process onto our job-based
parallel reduction model. The job model has to be extended by an extra annotation that causes

the retention of graphs in remote processors.

For two application programs it is shown how to construct and annotate coarse grain parallel
jobs, using the presented transformations. One application program is a tidal model of the
North Sea, consisting of coarse grain communicating processes. The other application shows

how to construct a simple parallel simulation of digital hardware, from fine grain processes.
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Appendix:  Summary of communication lifting

A.1  Models of a synchronous process

Fs(x1.xr1)... Xn.Xrm) — (@ S X1... Xn) - F (f s Xq... Xp) Xrq.... xry (S1)

where s is the state of the process F
(Xj . xrj) are input streams to F

g is a function that computes the next output element of F
f is a function that computes the next state of F
F (x1.xr1)... Xp.Xm) — (@ X1 ... Xp) - F xr1....xrq (S2)

A.2  Application requirements

The application to be transformed is a rule set FN and a graph GR with the following

restrictions:

FN:: Fj sj (Xj1 . xri1) (X2 . xri2) ... (S3)
- (gi si xi1 xj2 ---) - Fi (fi si xj1 xj2 ...) xriq1 xri2.. (i=1..n)
Fi (xi1.xri1) (xj2..xr2) ...
— (9i xj1 xi2 ...) - Fj xri1 xri2 .. (i=n+1..m)

GR: aj:Fj tj bj1 bj2 ... (i=1..n) (S4)
aj: Fj bj1 bj2 ... (i=n+1..m)

Oi O 1.m | (aj: Fj....) O GR Fi O FN (S5)

QoutO1.m | aout : Fout Sout Pout,1 bout,2 --- is the output of GR (S6)

A.3  The description of communication lifting
Model rule:
New-FN:: G State Input-streams — Output . G New-state Stream-tails

Transformation of FN and GR with the model rule in six steps yielding NEW-FN and
NEW-GR:
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Oi,j01.m (T1)
Lk O 1.. the number of stream arguments of F;
iff GR contains two nodes aj, aj such that:
aj: Fj tj bj1 bj2 ...

aj: Fj 4 bj1 ... bjk-1 aj bjk+1 -
and  the definition of Fjin FNis:
Fi sj (Xj1.xrjq) ... (Xjk.erk) — gj - - Fj .
then xjk O Cjj

G[ (s1-52....8pn) / State] (T2)
GI[ (f1 s1 x11 x12 ...).(f2 s2 x219 x22 ...). ... .(fnh Sn Xp1 Xn2 ...) / New-state ]
G [ dout Sout Xout,1 Xout,2 --- / Output ]

Ui, jO01.m and Ok 1. the number of stream arguments of Fj (T3)
if Xjk O Cjj

then  G[ (gi si Xi1 Xi2 -.) / Xjk ]

G [ (argument-list of all (x j k. xrjk)  such that XjkOCjj) / Input-streams ] (T4)
G [ (argument-list of all xr j k such that XjkUOCjj) / Stream-tails ]

where i, j 1. m and k U 1.. number of stream arguments of F;

OkO1.n: (TS)
New- FN ::G(s,..8,...5,)... » ..
00 New-GR:: agyt: G(s1... tk .- spn) --
GR:ay :F it b,b,,.. 0
(Ui,j01.m and Ok O 1..number of stream arguments of Fj ) | xjk U Cjj : (T6)

New=- FN ::G(...). (X X0y ) =20 o o
GR::a, Fth by HD New-GR:: aout: G (...) ... bjk ...

JriTare

A.4 Sandwich and own transformations

Model program:
G(s1.82) ~— a. G ((f1 s1 b).(f2 s2 a))
a:gq s1
b:g2 s2
Transformation examples SW1-SW4 of the model program:
G (s1.52) — a . G (Sandwich Cons (f1 s1 b) (f2 s2 a)) (SW1)
a: Head c

b: Tail ¢
c: Sandwich Cons (g1 s1) (g2 s2)
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G (s1-s2)

G (s1-s2)

G ((s1-2a)-.(s2.b))

f1' s x

fo' s x

—

—

—

—

a.G ((f1 s1 b).(f2 s2 a))

a: Head c

b: Tail c

c: Sandwich Cons (g1 s1) (92 s2)

O]

. G (Sandwich Cons (f1 sq1 b) (f2 s a))
a g1 $1
b: g2 s2

a . G (Sandwich Cons (f1' s1 b) (f2' s2 a))
(Owns1'). g1 s1'

sq" f1 s x

(Own s2) . g2 s2'

so" fo s x
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(SW2)

(SW3)

(SW4)
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Abstract

An extensible machine architecture is devised ficiefitly support a parallel reduction model of com-
putation. The gganisation of the machine is designed to match the behaviour of the application pro-
grams. A pilot implementation of the architecture is used to obtaixeznten profile of the &rious
applications. These profiles are used with a performance model to calculate optimal schedules of the
applications. Theesulting speedup figuresvgi an upper bound for the performancaig that may be
attained on a full implementation of the architecture. The most important result is that each application
allows for a processor utilisation ofes 50% to be attained on our parallel architecture.

Key words: localmemory architecture multiple processor system
optimal scheduling parallel graph reduction performance measurement

1. Introduction

With todays microprocessor technology it is possible to connect large numbersmedrfpb
processors via a high speed communication oitwEachprocessor may be equipped with a

large store, to which it has high speed access. Storage modules can be equipped with fe
access ports. Arbitration logic makes shared access possible, with the same high speed, unless
a dorage cell is accessed from more than one port at exactly the same time. It is difficult to
provide a lage number of processors with high speed access to a common store. A globally
shared component tends to reduaelif tolerance, extensibility and potential parallelism of a
system. Considering this, we set out tedllp a model of computation based on reduction,

T This work is supported by the Dutch Ministry of Science and Education, dienst Wetenschapsbeleid
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that can be implemented efficiently on an architecture without a common store. In part | of this
papet it was shavn, that based on this model of computation, interesting application pro-
grams, such as &gs dgorithm? to sole a parse system of linear equations, can be trans-
formed into functionally equalent versions that benefit from parallefaiation on such an
architecture.

The model of computation is based on the concept of. &fob is a closed, needed redbat

can be eauated in parallel to other jobs at a cost that can be kepftdotwo reasons. Firstly

during the galuation of a job, there is no need for communication since it is closed. Secondly
the communication costs incurred in setting up the job on a separate processor and returning
its results can bedpt lov enough to mak& parallel evaluation beneficial. This is achied by
transforming programs without this property into functionally eglent ones with this prop-

erty. A possible disadvantage of this scheme is, that paratbiiagion of closed xressions

makes it necessary to duplicate shared subexpressioraoitl the duplication of work, such
subepressions must be in normal form. A functionvsilable to normalise shared suipees-

sions before the generation of parallel jobs.

Jobs arise when a special function “sandwich” is encountered duringrdloaten of an
application. It gres the arguments of the function the status of a job and schedules their paral-
lel evaluation. The application programmer has to ensure, that the requirements for jobs are
indeed satisfied. Special precautions mayehta be taken to balance communication and
reduction cost. For instance the recugstibdiision of unsorted lists in the quick sort algo-
rithm must be stopped when the lists become too small. A threshold mechanisrmsabige

form of dynamic grain size control. Applications that lend themselves well to be written as
“sandwich” programs are divide-and-conquer algorithms.

In this part of our paper we describe the machine model in more detail and present perfor
mance figures with respect to the application programs and a pilot implementation of the
architecture.

2. Machinemodel

The architecture of the parallel reduction machine that we use to support the sandwiph strate
consists of a network of processing elements, each wiin arhount of local store. o rot

make assumptions about the topolodyntil now we haveused a string of processing elements

and experiments with a regular mesh structure are planned. The use of shared store as a com-
munication device allows for some interesting optimisations to be implemented.

2.1. Storage

The storage space of a processing element is the set of storage cells that can be accessed by
elementary operations, such as “dereference pointer” or “allocate cell”. This is called local
access. Althougim general communication facilities are necessary to access the store of an
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arbitrary processing element (non-local access), the storage spaces of adjacent processing ele-
ments may partly\erlap. Hence some transactions may bypass the communicatibitiefs,

because both parties Jalocal access to the same store. Wherviddal storage cells are
addressed, non-local access mwags much slower than local access. Most communication
systems transfer Ige groups of elementary data items as a single packet to amortiserthe o

head incurred in setting up a transaction.

The classical message passing paradigm does reottedntage of verlapping storage. This

is mainly due to the call by value semantics of the message passingvpsimitiich causes a
message to be copied from source to destination. Yet anotheottpe message has to be
made if during transmission the destination storage area is stillwnkfdis unfortunate sit-

uation arises because data transfer is usually combined with process synchronisation and it
may well occur that the recipient of the message is not yet ready to accept it. One solution is to
delay the transmitter until the recipient is prepared to communiagtéhib is unacceptable in

those areas where insufficient parallelismvailable to coer the waiting periods. Reilar
message passing causes at leastcpies to be made of the transported message.Vdotae

single cop is necessary if both parties in communicationéhacess to the same local store

and synchronisation is separated from communication. The latter scheme is used in our pro-
posal to transport jobs and results.

2.2. Processing

An alternatve rame for string reduction is tree reduction. This term blends well with the “job”
structure that is generated by the sandwich gfyafide root of the tree is formed by the main

job. Reduction of a sandwichxpression causeswgobs to be created. The representation of

a job “flows” along the edge that connects the job to its parent. On termination, a job commu-
nicates the result to its parent along the same edge but in opposite direction. Communication
between tw jobs is only possible, when thare parent and child. Consider as an example the

job structure shan in figure (1) that arises during theeeution of Wang’s partitioning algo-

rithm. The horizontal solid lines represent sequential calculations (measured in reduction
steps). The ertical solid lines represent the size of the jobs (measured as a number of nodes)
that are transmitted to be reduced in parallel. The computation stadsqokntially (185

steps) until the first tav subjobs are created. One of them causesrgw jobs to be started

until we arrve & the situation where fesjobs are edluated in parallel for a relatly long

time. In order not to clutter up the diagram the jobs and results are shown as separate trees.
The flov of results is drawn as dashed lines that mirror the @ibjobs. In most applications

that we hge mn it takes little time to merge the result&/ang’s dgorithm consists of te par-

allel phases and a sequential phase: after the first elimination phase a long sequential calcula-
tion is necessary (7411 steps) before the second elimination phase can be started.
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Figure 1 : The job and result trees generated by Watygrithm (not drawn to scale)

The processing elements in the parallel machine architecture must be arranged in ayuch a w
that a dynamically generated job-tree as describedeadam be mapped on the ysical topol-

ogy. Each indvidual processing element must be capable of supporting more than one reducer
(process) and a reducer isatved with a single job until the job terminates. Within a process-
ing element a form of local scheduling is necessary tovdlo a reducer to it for comple-

tion of the children of the job it is reducing. The processing element is then frees tptak
another assignment. By definition the normal form of a job is needed in some context, hence
the local scheduling need not be concerned with preemption and reschedulingegobsti

If the number of jobs does not exceed the number of processing elements, each processing ele-
ment could be allocated to a job (via a reducer). In that case the utilisation of resources is not
optimal. Therefore the number of jobs should bgdarthan the number of processing ele-
ments. Indiscriminatallocation of jobs to reducers may not yield good resutisiristance if

all leaf nodes in the job-tree end up in a single processing elementethi performance of

the system will be worse than that of a sequential machine.

2.2.1. TheConductor

Control is necessary to spread the joler ahe available processing elements and to mak
sure that the storage requirements of the jobs do not exceed the machine. &qthcagtvi-

ties require global informationolechieve tis, we hae cecided to allocate this task to a dedi-
cated processing elemente\Wall this centralised scheduler the conductor to stress that it has
complete control wer the “orchestra” of reducers, but that once a reducer has been allocated a
job, it enters a relately long period of autonomyfo be esponsie, the conductor must kia a
“direct” connection to each reducén large systems it will be necessary to implement the
conductor in a distributed fashion. Each single conductor controls a section of the system, b
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by exchange of information between conductors, global control of the system isfetituef
ated. Our gpectation is that this genisation does not introduce a bottleneck, since the pur
pose of creating jobs was to produceyéagrains of parallel computation. If the jobs are too
small to sustain the extra cost incurred in centralised control, the tools that waopele to
regulate the grain size were applied inappropriately.

The task of the conductor is to balance the load in airoement with resources that are
scarce. In general there are ypavays to distribute a number of jobseo a number of pro-

cessing elements. Each possible distribution is called a schedule. Not all schedules are feasi-
ble, because the storage capacity of each processing element is limited. The schedules that
would cause the capacity of one or more processing elementerflow should be rejected. It

is the purpose of the conductor to choose the shortest feasible schedule. A practical load distri-
bution algorithm can not guarantee that a feasible schedule is chosen, because the maximum
size of a job is not known in adnce. lItis therefore possible that deadlock will ocddow-

eve, uch a situation can be detected immediatelya g/stem with background store the risk

of deadlock will be laver, because the storage capacity of each processing element will be
larger.

To dlow for the conductor to makensible decisions, the size of a job has to be included in a
request for job allocation. In the applications that wereldped in part | of this papgthis
information is already present for dynamic grain size control, so it can be usedkaarmost.

The load balancing algorithm of the conductor will base its allocationypoidhe recorded
history of the application program that is running. In our opinion the history should also
include information about previous runs of the same application, whieh tpat most appli-
cations are run more than once, should in principle be possible. Thedueha an applica-

tion is captured in a parameterised “profile”. For example the quick sort algorithm has a profile
shown in figure (2).

step action expression interpretation
1. selecpivot p1 constant time
2. splitlist | x p, time proportional to the length of the list
3. recursrely sort sublists 1% ps3
PR times dependent on the lengths of sublists
4. appenagivot and sublists 1 x ps time dependent on length of first sublist

Figure 2 : Execution profile of quick sort

Fed with this information, the conductor can maktimates of the »ecution times of both
recursve invocations of quick sort at the time there about to be scheduled (step 3). The
parameterg; and p, are multiplied by the lengths of the sublists, which are calculated by the
split phase for the purpose of dynamic grain size control. In a sense the conductor is allowed to
look one “step” ahead in time, whichvgs it predictve pwer to schedule the next family of

jobs.
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We ae still investigating general methods for the specification>@cation profiles® Our cur

rent results are based on exact profiles of the applications, which state thxeqe@be times

rather than the parameters from whicteaaition times can be estimated. The performance
results presented in this paper are calculated a posteriori, from the recacddr profiles.

The calculation of the optimum schedule (see section 4) is based on a heuristic, which uses
adwance knowledge that is restricted to one “step”, such that the resulidepen upper

bound on the performance gain on a full implementation of the system.

2.2.2. Thereducer

A reducer performs the actual rewriting of afpression into a normal form.oTavoid the
compleity of dynamic process creation, all reducers are started when the system is started.
Steps 1 and 2 (belg are performed ad infinitum, by each reduSep 3 is performed when a
sandwich expression is encountered.

1) Thereducer waits until a job ames. The job will require manreduction steps before it
reaches head normal form, since it represents a coarse parallel grain.

2) Thenormal form of a job must be returned to its crealbe creator of the job will find
that the root of the original representation of the job has beswritten by the result.

3) Theevduation of a sandwichxpression may cause wgobs to be created, proed
enough resources argadable: a free reducer and sufficient storage for eachThb
conductor process will be a=k permission before the jobs may be created. A single
transaction with the conductor is sufficient, since all potential jobsvaikalde at the
same time. The reducer has to wait until the conductor sends itsatéelyvise it could
alter the jobs (while reducing) and this would mdhe size of a job an unreliable mea-
sure. Another reason is, that after all jobgehlbeen taken up by other reducers, there can
be hardly ap work left, such that the reducer might as well be suspended until all jobs
are complete. If the conductor refuses the requedtjaion proceeds in the normal lazy
fashion.

2.2.3. Graphtransport

In addition to the reducers, each processing element supports a graph transfer process. This
process operates &kan nterrupt handlerin the sense that when a message is vedeb
transport a graph, normal (reduction) processing is interrupted, and the transgectusied

as a single indivisible action. On completion, control is returned to the interrupted reducer
Like a eal interrupt handlethe graph transport process should not encounter delays, such as
those resulting from synchronisation requirements between producer and consumer of graphs.
The reason that such delays are impossible is because all parties in the transfer of jobs or
results are inacte while the transfer is taking place. The consumer of a graph isvieacti
because it is a reducer that igiting for either a result or a wgob. In the case of a result
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transfer the producer has just reached a normal form, hence it can no longewbeliaaias
shavn earlier that it is necessary for the producer of a job to be suspended until the result
appears.

Since a graph that aves at ts destination requires heap space, interaction between graph
transport and reduction (via storage allocation) desefurther attention. Large graphs are
transported in a number of packets and each packet contains a number ofDejuisding

on the particular storage allocator that is used, in one request an area may be allocated that is
large enough to store the entire graph, a packet or just a node. The smaller the allocation unit,
the more likely it is, that graph transport will bevaldJnfortunately storage allocation and
reclamation schemes that support varisized allocation are mpees¥e than those that only
support fixed size allocatioffs® Hence there is a tradédfetween data communication speed

and sequential reduction speed.

The graph transport mechanism that weehepted for assumes, that a contiguous block of
store, large enough to hold the entire graph is allocated before the first pavketediis des-
tination. The reasons for this choice are twofold. Firgtlg algorithm is simple enough to be
implemented directly in hardware. Secondly it may alsoesteryerform copying garbage col-
lection. In this way impaired sequential reduction speed can beveadpsgnificantly.

2.2.3.1. Copyinggarbage collection and graph transportation

The conditions that are satisfied when a graph transport operation is started can be summarised
as follovs. The transmitting process is guaranteed not to alter the graph that forms the contents
of the message ifrom — space because the entire process of graph transportation is an indi-
visible action to the transmitting process. The storage area of the message at\bes@eei

in to — spaceis known in advance. The area is also reserved, because the allocation has already
been done, for instance by the conductor.

To make an ficient hardware implementation possible, the number of accesfesite and
to — spacemust be minimised, since accessing non loc&lb@drd) information incurs consid-
erable protocol werhead. Thefollowing classification of accesses may setw darify the
restrictions imposed by such efficigrmnsiderations:

Reading nodes at arbitrary locationsfiom — space
During the coping process, each reachable node must at least be read once. A shared
node is read as matimes as there exist pointers to that node.

Writing pointer fields at arbitrary locations from — space(marking)
Sharing requires the cgipng algorithm to mark the nodes thatvhadready been pro-
cessed. Marking may be performed by storing the forwarding address of a node in the
original node infrom — space

Writing nodes in “stream mode” to — space
A node needs to be output once onlythe releant information contained in the node
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has been updated completely before it is output. This feature is a significantoeggy as
it allows the nodes to be output as a continuous stream (into a pipeline), without the need
for explicitly indicating the destination addresses of the nodes.

The compaction algorithm that we are usingarses the graph in pre-orddentire nodes are

read out and stored in a local stack. The address of xh@o@e to be output is maintained in

a local counter It is incremented by the size of a node each time one is outputtspace

The stack contains the nodes, which form the leftmost path from the root to the current node.
If the top of the stack contains a node that does not requirefats pointers to be updated

arny more, it is output tdo — space The stack is popped and the appropriate pointer in the ne

top node is replaced by the current value of the output colniten a previously copied node

is encountered, its forwarding address rather than the contents of the output counter is used.
The algorithm is started, with a stack that contains & obthe root and it terminates as soon

as the stack has become emptt the end an additional wersal of the graph in

from — spaceis needed to reset the marks.

Initial stack configuration

root 1245
— 1 1246
2/ \7 % % ‘ tack th
—» Stack grow
PPN 174> )
AR 150
5 6 9 % 7
Final stack configuration
Figure 3 : (a) sample graph (b) successiack configurations

The sample graph of figure (3-a) causes the stack configurations of figure (3-b) at the moments
when a cop of a node is output tdo — space The cell marked with an asterisk is digeed
to be a shared node.

2.2.3.2. Cycliographs

The graph compaction algorithm will fail to terminate if cycles are present in the graph. In
functional programs, cycles can only be created by reeufisnctions. Within the body of a
recursve function, the occurrence of the function name itself causgsla © be created in
graph reduction. The number of functionsveeer is determined by the compileand remains
constant during»ecution. Pointers to functions within a graph can be implemented by con-
stants, which represent the imda the table, where the function is stored. Hence thgdes

will disappeaP The same reasoning also holds for mutually reeenrsinctions.
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The solution to the Hamming problénuses a recungé data structure, which if properly
implemented by a cyclic graph, results in a linear time algorithm. Yol aata structure
maintains a form of histoyyhich can also be achied by using explicit parameters to repre-

sent the historyThe algorithm still runs in linear time, but no longer contains cycles. The
same type of transformation can be used to eliminate cyclic data structures in a wide class of
practical application$.This transformation has been applied to one of our test programs (the
tidal model). Compaction algorithmgist that can handle cyclic graphs propgehiyt these are

less efficient. Either the graph must bevéraed more than once, or the copied nodes are
updated after thehavebeen output. & propose to @oid cyclic graphs, wen though certain
computations will be performed less efficiently.

2.2.3.3. Rerformance analysis

An estimate is gien of the expected performance of the graph compaction algorithm described
above, both in case it is implemented in hardware and in software. Thentwlementations
differ in several aspects:

Data transfer protocol cost
Some bus protocols allofor data to be transferred as a continuous stream, without inter
vening addresses. Both at the transmitting and theviageside the address of the €ur
rent datum, maintained in local registers, is incremented after each trdihsfeallovs
the hardware implementation tovieaa nuch higher access rate to ttze- spacethan a
software implementation.

Instruction fetch andxecution
The softvare implementation requires the CPU to fetch, decode xemite machine
instructions. Our transfer algorithm was coded in 32 Motorola MC68010 machine
instructions (78 bytes), of which on theeeage 90% arexecuted per node. These could
be lept in the MC68020 on-chip instruction cache. In spite of its ability vislap
instruction decoding andxecution, the MC68020 still requires time taeeute some
instructions (e.g. branches) that can not\mlapped with data transfers.

Hardware parallelism
Many operations that must be performed in sequential order by a general purpose proces-
sor, can be performed in parallel by a special purpose processor such as a graph com-
paction module. Forxample, the algorithm has been designed such, that once a node is
ready the original may be marked while the gap being output to another store. Such
an optimisation can only be achee with hardware.

Arbitration protocol cost
The share of protocol cost in accessing theib not negligible. The CPU has irfsziént
means to optimise the usage of this,bsince the bus protocol circuitry enforces the use
of a standard protocol. In contrast, the hardware implementation needs to acquire mastery
over the destination bus once and may continue to use the bus as efficiently as possible.
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The performance of a software implementation (on a MC68010) was foundetede10.000
nodes per second. A preliminary study has shown, that the hardware implementation can be up
to two orders of magnitude faster.

The graph compaction algorithm has the disatlvge, that it requires a local stack, which on
the average require§n cells for a graph witth nodes® A stack of for instance ten thousand
nodes with Z 32 bits per node does not pose unsurmountable problems. Becausevatack o
flow can not be pneented nor ignored, special precautions must be ¢akto deal with stack
overflow properly8

2.3. Cooperationof functional units

Having exposed the functionality of the components in the architecture, we wahovo with

an example he they cooperate. Figure (4) represents a configuration with three processing
elements dedicated to reduction and the condu@maphs reside inwerlapping stores. The

life cycle of a single job is traced by describing, in chronological ptter messages that
travel the system.

Message VI Message Il

Store 2
copy of
job,

Store 1
jObl e

Message Message Il

essage | Message

PE 4
conducto

Figure 4 : Graph and message transport

Message I: Create jobs
Reducer ] on processing element 1 notifies the conductor of the creation of potential
jobs located in store 1. The size of the graphs representing the jobs and the pointers to
their roots are part of the message.

Message Il: Transport job
The conductor decides to allocate reducgto3the first job, and sends a message to the
graph transfer process on processing element 2. The message contains the identification
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of the producer and the consumer of the graph representing the job and its location. Since
processing element 2 has local access to both the source and the destination area, the
graph can be transported node by node without requiripgra@rmediate copies. This
advantage is due to both the use wéntapping stores and the separation of synchronisa-

tion and communication. The conductor has a good opportunigptoiethis property of

the architecture in its allocation palic

Message lll: Startvaluation
When the transport has finished, reducgmist be made readyrhis can be accom-
plished by allowing the graph transfer process to pass information to the local scheduler
of processing element 3. This form of synchronisation can not cause delays, since the
receving party is guaranteed to be waiting for it. The pointer to the root of the graph is
part of the message.

Message IVResult aailable
The aailability of the result has to be announced to the condustare it must kna
when a reducer is free to reeeia rew job. The conductor also ganises the transport of
the result. The message contains the whereabouts of the result and the identity of its pro-
ducer and consumer.

Message VTransport result
The transport of the result is similar to job transport.

Message VI. Job complete
The scheduling administration on processing element 1 is updatedjsiere¢hat a job
that reducer lis waiting for has n@ arrived. By the time that all outstanding jobs/ha
been completed, the waiting reducer is made ready by the local scheduler.

A similar communication pattern engss if jobs are to be transported under lassurable
circumstances. The transfer wilvolve more processes and intermediate copies can no longer
be avoided.

2.4. Modeof operation

We tink of a parallel architecture for reduction as an embedded processor iveaticoml

host computer system. The operating system of the latter prosidbses to load andxecute

an application on the embedded system. The embedded processor is allocated to a single task,
in the form of the mainx@ression to be reduced, and remains allocated to the task until it
completes. This abates the need for multi-programming and other complications necessary

in a general purpose systeme\®n &en dford to omit support for input/output operations,
because the embedded system may be fed a stream of jobs, which it will turn into a stream of
results. While preparing the xtgob, the host may perform the necessary input/output opera-
tions.
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Before an application can be started, its representation has to be prepargeciitiore
Depending on the way the reducer references the representation it may be (partially) preloaded
in the processing elements, or could be transmitted as part of the jobs. If the demands with
respect to the necessary code of the parallel computations are highly dynamic, preloading
appears to be asteful of both space and time. If the same code is required by all jobs,
preloading is more economic.

The self modifying (sometimes called self optimising) property of the code generally used in
graph reduction has a menacing characteristic to the code management scheme. Although
semantically equelent, some representations of the same function consume more space than
others. Consideas an gample, the function that computes the list of natural numbers. As
soon as a certain number of elements of the lig¢ feen ®aluated, the representation will

have gown with respect to its initial form. &ping the representation as it igesaime, when
elements of the list are needed more than onoceerfieg to the original form ses ace, ot
requires the list to be recomputed if it is needemiragn a sequential graph reduction system,

it may be &pected, that the self modifying property may be controlled more easily than in an
implementation where code is distributederoa retwork of processing elements. The reason

is, that transportation of a large representation of a function incurs a time penalty with respect
to a small representation. In the extreme case, it meay ke worthwhile to perform an
amount of recalculation to reduce communication costs and stillvecbest performance. In

our experiments we ka lected the bek&ur that gvethe best performance imp@ment

with respect to normal sequential versions of the same applications.

3. Performance model

To quantify the performance difference between sequential lazy graph reduction and graph
reduction with the proposed parallel stggt@and architecture, some measures are defined and
applied to the application programs.tiVnormal lazy graph reduction, the totadeeution

time for a program is assumed to be largely dependent on the total number of reduction steps.
If the individual reduction steps require roughly the same amount of computation, this relation
Is assumed to be lineaBuch is the case with the combinator reduction system used in our
experiments’ Therefore, the amount ofask involved in normalising an expression is identi-

fied with the number of reduction stepsadlved. The definition of the sandwich strategy is
such, that there is no tefence in the total number of reduction steps required, whether a pro-
gram is gauated under the normal lazy strggeor with the sandwich strage Using the
sandwich stratgy, the net &ecution time of the program is less, due to paraleluation of

jobs. The diagram of figure (5) schematises this difference. The horizontalgmerss rep-
resent the number of reduction steps required by the different branchesviaubé&an.
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Figure 5 : Time diagram of parallelauation

On a system with unlimited processors and free data communication the total number of
reduction steps, whem branches are generated, is:

m
Ri=b+2 s+e 1)

i=1

With the sandwich strategy the net number of reduction steps is:
Rn:b+m”z':11x34- +e (2)
1=

The numberd, s; -+ S, ande in (2) are also interpreted as net reduction steps, rather than
total reduction steps as in (1). The performance gain of parallel graph redustiolazy
graph reduction may mobe &pressed aR/R,,.

This is not a realistic approximation, since programs must be partially rewritten before the
sandwich strategy may be appliedeefively. Therefore, it is only fair to refer to the measure

Rs, which gives the number of reduction steps for the sequential, untransforensiw of the

same program. The rati&s/R, is considered to be a more realistic measure of performance
gan. The ratioR/R; gives the performance loss due to the cost of program transformations
required to exploit parallelism.

Refinements are introduced to model some of the delays that mapdrgerced in the sys-

tem. The first refinement compensates for loss in computing resources due to the transporta-
tion of jobs and results, since in the proposed architecture, the processing elements operate on
private stores. In the modified time diagram of figure (6), the horizontal axis represents reduc-
tion steps as before. The length of a diagonalarepresents the size of a graph that is trans-
ported, measured as a number of nodes. A graph transfer process likbaa ppeline: one
processor collects the nodes of the graph and sends a stream of nodes througlotkeAtetw

the end of the pipeline a companion processor assembles thefabp graph. In the general

case tw processors are aedly working on the same transporflransportation cost is
expressed in reduction steps, by equating the time necessary for the transporfatimodes

with that spent in one reduction step. Furthermore, a penallyr@duction steps accounts for

the time spent in communication between processes. The roman numerals used to identify the
transactions in figure (4) are shown in parentheses in figure (6).
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Figure 6 : Time diagram of parallelauation and transportation
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The transportation cost is dependent on the distanedl&ich As a first approximation, we
would like o ignore locality and assume that all graph transports relate to the same distance.
The values o€ andT are rgaded as constants of the hardware and software configuration of
a particular implementation of the proposed architecture.

In the performance measureveleped thus dr, the role ofR, is assumed by a wequantity
Ry, Which takes data communication cost into account.jiahdr; represent the numbers of
transported nodes in respeety thei —th job and tha —th result. The communication cost
pertaining to the — th job/result is:

G =arotorottc 3)

The gross number of reduction steps of the whole famiiy ibs is defined as:

Rg:b+mr211x(ci+s)+e+20 (4)
i=

The ratioS = Ry/Ry gives the maximum speedup that can be attained. If the number of pro-
cessing elementd required to achiee this speedup is taken into account, we find for the pro-
cessor efficiency:

_ R 5

" RyxN (5)

The enumerator in (5) represents the amount@kwlone, whereas the denominator repre-
sents the maximumvailable computing capacity.

4. Optimal scheduling

Before considering the implementation of “on-the-fly” load balancing on xpergnental
reduction machine, we ha investigated the consequences of the performance model outlined
in the previous sections. This model assumes that the number of processdigaatbufamge
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to allow every job to be scheduled foxecution as soon as it is generated. In the more realistic
case of a limited number of processors, jobs wilehta wait until a reducer becomesad-

able. D calculate the best possible performance of an application orema ajchitecture, we

have wsed the data obtained with the performance model to compute an optimal mapping of
the generated jobs onto theaidable processors. This mapping, which minimises the turn
around time, is called an optimum schedule. Computing an optimal schedule a posteriori
senes two purposes. At first it yields an upper bound for the speed up that can be attained with
the given goplication on the class of architectures considered. Secardiptimum schedule

can be useful when the same applicationxested frequently with diérent input data and

when the generation of jobs hardly depends on the input d&ia.is the case with thagt

Fourier transform, \@ngs dgorithm and the tidal model, primled the size of the problem
remains fixed. For example, the latter application is designed to be used frequently and the
generation of parallel jobs in the program only depends on geographical data, which are not
likely to change often.

4.1. Schedulingof jobs

The illustration of figure (7) shes two jobs (fork; and fork,) that hae exeuted asandwich

primitive and three jobs that remain sequentialid;, mid, and mids). The horizontal axis
represents the elapsed time as measured in reduction steps. The depicted durations of all job
entities include the communication cost that is modeled by the paraf@edadsT in the per
formance model (shown by the dashed arrows).

m|d3
elapsed time fork, — i
— - 7 L EARmae
. 5 \ .
fork, mid,
mid, V joing
\ '

Figure 7 : Fork, mid and join jobs

After evaluating a sandwich reduction step, a job is suspended until the forked jabsdlha
terminated. From a scheduling point ofwjéhis gies rise to three different job entities with a
strict precedence relation:

fork jobs
A fork job eecutes a certain amount of reduction steps and themnspa number of
descendant jobs.
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join jobs
When its descendants v terminated and their results ieaarived, a fork job may
resume reduction until it either terminates or encounters another sandwich application. In
the first case the job is called a join job, the second case classifies it as a fork job again.
mid jobs
A mid-job does notxecute thesandwichfunction and remains a sequential job.
Once an application has been run, allvaté data that is needed to compute the duration of
fork, mid and join jobs is collected. The problem that remains to bedahlvorder to obtain
an optimal schedule is to find a distrilon of fork, mid and join jobs that satisfies theepi
precedence relations and minimises the totedion time.

elapsed time toranch
EEm—
fork, y  mids join,
______________ 3 ; -4 pooroeneroeeeeeeeeeos PFOCESSOY
fork, mid, mid, join
: : | R——— ————— processog

Figure 8 : An optimal schedule with é&wprocessors

As an gample, figure (8) illustrates a schedule of the jolsslwed in the application of figure

(7) on a two processor system. The dashed lines represent the time periods that a processor is
idle. When the jolfork, wishes to submit its tavdescendant jobs (&t= ty,4ncr), there exists a

choice whetheprocessof should continue toxecute jobmid, or job mid;. Both allocations
represent a partial schedule and shouldviakiated to decide which of the dws the shortest.

The diagram of figure (8) stvs the optimum schedule for this problem. In large applications
mary branches arise, yielding a vast search space to find the optimum schedule. The search for
an optimal schedule with three types of jobs and prescribed precedence relations is an NP-
complete problem.

4.2. Branchand bound algorithm

The algorithm that we ka wsed to find the optimum schedule constructs a tree of possible
allocations of jobs to processors. It is based on the branch and bound pfhEaté node in

the tree represents the choice of allocating a job to a procAgsath from the root of the tree

to a leaf forms a complete schedule. While the tree is constructed in a depth-first, @anner
administration of @ailable jobs is built and attached to each node of the tree. This is necessary
because the set ofalable jobs at each node depends on the history (i.c. which fork jobs were
executed). The fact that join jobs Vet be €heduled at the same processdrere the corre-
sponding fork job once was allocated also renders the allocatioy pisliory sensitre. If this
restriction on the allocation of join jobs would notvédeen imposed, the system would/éa
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to physically transport the representation of the join jobs to the elected prockssor
expected, that the incurred data communication cost does not outweighirtia gcheduling
efficieng/ that can be obtained by unconstrained allocation of join jobs. In our application pro-
grams and on our architecture, the cost to transport the representation of a join job is more
than an order of magnitude larger than its reduction cost.

To reduce the size of the search tree, the scheduling program computes a lower bound on the
best possible schedule that can be realised fromea gode and compares this bound with

the best schedule found sar.fIf the lower bound exceeds this schedule, the seargmbe

this point is cancelled. The lower bound is calculated with xipeessiont + e/p, wheret is

the elapsed time, measured in reduction steps, teea#ithe gven branch point (e.g.

t = tyanch IN figure 8). The quantitye represents the total number of reductions steps that
remain to be performed in all jobs, from the current branch point until the end of the applica-
tion. The ratioe/p equals the processing time required xecete the remaining amount of
work (e) if an exact partitioning of the workwer the aailable (p) processors would be possi-

ble. The lower bound coincides with the real optimum schedule, if this exact p-partists e

for the jobs that remain to b&eeuted.

The proposed branch and bound algorithm is mdsttefe if the search is directed in such a
way that a near optimum solution is found quickly such a near optimum is established in
the \ery beginning of the schedule, nyasearch paths in the remainder of the program repre-
senting longer schedules can bfeetively pruned. To achieve tis, the following heuristics
have keen incorporated in the program:

a) Becausé our applications join jobsahys contain a negligible amount of work, first an
optimal schedule is computed for fork- and mid jobs.

b) If a choice exists, a fork job has priority@ a join job, thus fork jobs are scheduled first.
Scheduling a fork job increases the number of jobs that st vabe €heduled, while
allocating a mid job decreases this numiée heuristic assumes, that better schedules
arise if more jobs arevailable.

c) A larger job takes priority \eer a gnaller job This heuristic has been men to yield a
schedule that is at most a factor obtlarger than the optimal scheddtfe.

4.3. Aparallel program to find the optimum schedule of a set of jobs

While designing the program to find optimal schedules faideiand-conquer algorithms, it
appeared that the program itself could be written asvidedand-conquer application and
included in the set of application programs that we use to test our parallel reduction model.
However, because jobs e © be ®If contained, a central administration containing the best
schedule found saf, can only be maintained at high cost. This implies that the pruning of
subtrees can not be performed. The gain in scheduling time due to pashliatien has to be
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compared to the loss in searchiaéngy. Considering that the search with heuristics angelo
bound comparison only realises a speed up by a factorocofvith mary jobs of about the
same size, the speed up of the scheduling algorithm by paraedtzition soon exceeds the
loss in search &€iengy. The threshold mechanism that we use for dynamic grain size control
causes all mid jobs to be of approximately the same size.

The SASL functionAlloc of figure (9) implements the tree search algorithm without tiverlo
bound calculation and cancelling of subtrees. This paraiedian of Alloc shavs hav the
sandwich function is used in combination with the threshold mechanisnAldesgfunction is

a smplified version of the result obtained by the job-lifting and grain size transformations,
which are described in part | of this paper.

1. Alloc jobold jobnew procold() level

2. = Procesq jobold + + jobnew) procold level

3. Alloc jobold() procold (proc: procnew level

4, = Alloc () jobold (proc: procold) procnew level

5. Alloc jobold jobnew procold(proc: procnew level

6. = Busy proc - allocnextproc

7. jobnew= () - allocnextproc

8. level > Threshold- (allocjob; nextleve) : (allocjob, nextleve)

9. sandwich congallocjob; nextlevel) (allocjob, nextlevel

10. WHERE

11. jobold; : (job : jobnew) = FindNextJob jobold jobnew proc

12. allocnextproc= Alloc () (jobold + + jobnew) (proc: procold) procnew level
13. allocjob; = Alloc () (jobold; + + jobnew)

14. ((Allocate jobproc) : procold) procnew

15. allocjob, = Alloc (job : jobold;) jobnew procold (proc: procnew
16. nextlevel=level + 1

Figure 9 : The parallel tree search function

The functionAlloc scans tw administrations: a job administratiopobold + + jobnewand a
processor administratioprocold + + procnew The lists jobold and procold contain jobs
and processors that Ve dready been scanned, where@bnew and procnew contain the
items that hee rot yet been considered. The headgaihewand procneware the job respec-
tively processor that are currently considered for allocation. The applicati@i®abb, and
allocjob, (in lines 8 and 9) constitute the dvdternatves of dlocating the actual job to the
actual processom{locjob,) and not allocating the actual jobllocjob,). The latter alternate
causes the next job to be considered for allocation. Both alimsate submitted for parallel
evduation by the sandwich application in line Blowever, this line is only gecuted if the
actual depth of the tredeyel) is below a certain \alue Threshold If the level exceeds the
threshold value, the same altermediare evaluated in line 8, but in this case sequentially.

The definition in line 1 applies pprocnewis empty which means that no more processors are
available for allocation. The functioRrocessadwances the time until one of the processors
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becomes free (via termination of the current job allocated to that proceRsmrssthen
recursvely calls Alloc to perform allocation of the recently freed processor(s). The definition
of line 3 applies ifjobnewis empty which is the case when no more jobs aralable for
allocation to the current processétoweve, there may still be join jobs that are ready for
execution and hee been skipped because yhieaveto be aecuted by a different processor
Thus instead of terminating, the functiddloc is called recursely in line 4 to enable join
jobs to be allocated to the nextagable processorThe functionBusyin line 6 checks if the
current processor is ready to reeea pb. The functionFindNextJohbin line 11 scans the job
administrationjobnewfor the next job that is both ready and allowedxecate on processor
proc (join jobs are preallocated). Jobs are found in a sequence that satisfies the heuristics b)
and c) of the previous section. Skipped jobs are prepended in frgobafl, such that the
result jobold; : (job : jobnew) is ill the complete administration angb is the required
next job.

5. Results

Having developed annotated parallel applications, a basic concept of a parallel architecture, a
performance model and an algorithm to calculate optimal schedules, wevcanesent pre-
liminary results. The most important result is the speedup that may be attained wéthdbs v
applications. The data that the scheduling algorithm requires to compute the speedup could be
obtained by running the applications through a fully implemented parallel reduction machine.
However, Snce the job structure that vi#ops during gecution of the applications is strictly
hierarchical, we were able tateact the required data from a simple pilot implementation. The
remainder of this section describes the experimental system thafilivenid the way the per
formance figures were obtained from the experiments.

5.1. Experiment

The perimental system consists of a alternating string of processing elementgedag-o

ping store® By limiting the maximum depth of the job-tree to the number of processing ele-
ments, we were able to test our ideas while the design of the conductor is still in progress. Cur
rently, a pocessing element supports one reducer and one graph transport process. During an
experiment, the first processing element in the string vesdine main expression. The jobs
produced from the main expression avelated one by one on the second processing ele-
ment, which in turn may pass jobs it creates on to the third processing element etc. This corre-
sponds to a pre-order Wasal of the job-tree. It does notwever cause reduction to be per
formed in parallel. A run on thexperimental system produces the data that the optimal sched-
uling algorithm requires to compute the speedup that may be attained. In a full implementation
of our reduction machine similar data would be exchanged between reducers and the conduc-
tor to perform on-the-fly scheduling.
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5.2. Systenparameters

The measurements on the experimental systes been performed using a sipfixed com-

binator graph reduc&rThe obsered data communication performance of 10000 nodes per
second is based on the binary node representation of this reducer (one node occupies 6 bytes
of storage). @ dbtain a realistic estimate of tAefactor we should use the real-time perfor
mance of an optimised sequential combinator graph redéiegrich exceeds 10000 reduction

steps per second on a VAX 11/750. Experience with CPU bound applications has shown that
the MC68010 processors of the experimental systera #mout the same performanc&he

reported reduction speed can be invpbby one order of magnitude via optimisation tech-
nigques, ot the same holds for the data communication speed via the use of speciarbardw

The latter mayen yield an impreement of two orders of magnitude (see section 2.2.3.3).

Considering both performance figures we mayweed \alue forT = nodes persecond/
steps persecond= 10000 / 1000G- 1 nodes/step. Tijnman and Hertzbgert3 report mes-
sage passing delays on a multi processor system that is similar to ours. \Wigeacessors
are connected by a shared memayich is the case for communication between the conduc-
tor and reducers, a delay of 2 msec is found. Therefore a reasorzdibde for C =
steps persecondx seconds= 10000x 0. 002= 20 geps.

5.3. Applications

A set of five gplication programs has been run on the experimental system to acquire the data
needed to perform optimal schedule calculatiomsir Fof these application programs; quick
sort, the fast &urier transform, \&hg's partition algorithm and the tidal modelJeabeen dis-
cussed in part | of this papdéarticular attention has been paid to annotation and transforma-
tion to adopt the applications to parallgkeution. In this part of our paper we introduced a

fifth application, that calculates the optimal schedule of a set of jobs with hierarchical prece-
dence relations. The remainder of this section presents a brief description of the input data it
has been provided with, folled by a discussion on performance characteristics under opti-
mal scheduling conditions.

5.3.1. Theoptimal scheduling application

The scheduling program presented in section 4.3 has been applied to (artificial) performance
data of seen hypothetical jobs. As such the program can kecated like any aher parallel
application and the acquired data can be used to calculate optimal schedules and maximum
speed-up figures.oldudy the performance of an annotated program on a parallel architecture,
the relation between four architectural variables needs to be considered.

Speed-up factor
This quantity is defined as the quotientRyf (the execution time of the sequential pro-
gram) and the duration of the optimal schedule. It corresponds to thevéntwoition that
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is corveyed by the word speed-up and it is the obyecfunction that has to be max-
imised. Theimit of the speed-up when the number of processors goes to infinity is the
guantity S.

Threshold value
A threshold is present in three of theefigoplication programs (see figure 9). In these
programs an abundant amount of parallel jobs is generated by vedursition calls. A
comparison with the threshold parameter stops the recursion when the grain size of the
jobs becomes too small. For @i goplication size and aggn number of processors an
optimal \alue for the threshold is determined. The threshold value is optimal when the
speed-up is maximal.

Synchronisation and communication costs
These are the paramet&sand T of section 5.2. Theiralue determines the minimum
grain size of a job that can still be submitted for paraket@tion without decreasing the
oveall speed-up.

The number of processors
This parameter can be varied to determine fovanggplication the smallest value for
which the maximum speed-up can be aodde Another possibility is to determine the
maximum number of processors for which thicefncy E of the system stays abm a
certain cost-effecte value.

To present the performance data of the scheduling applicationset® of curves are drawn in
figures (10) and (11). In both figures the speed-up is plotted against different values of the
threshold. For the scheduling application the threshold value represents a specific depth in the
search tree lyond which no more parallel jobs are generated. At the left end of the x-axis in
the figures this depth is zero, which means that no parallel jobs are subnmtiexzhsing the
threshold alue by one means doubling the number of parallel jobs, as long as the search tree
remains balanced.
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Figure 10 : Speedup of the scheduling program for 8 processors with ve+iac®rs

In figure (10) different speed-up curves are shown with the number of processors fixed to
eight. Each cum corresponds to a certain performance of the data communication subsystem,
expressed by th&-factor belonging to the curve. The figure shows that for this application the
T-factor should not drop beloavaue of 0.1 (i.e. the required throughput of the communica-
tion network should be higher than 1 node per 10 reduction stefh).tidé throughput a
maximum speed-up of 4.6 can still be agbiewith an optimum threshold value of 4. It is
assumed, that the lowest acceptable processor utilisation is 50% (a speed-up of 4.6 with 8 pro-
cessors in this case). Figure (10) alsowshthat data communication becomes gligéle

factor when the network throughput exceeds thlees of one node per reduction stép=1).

The performance data of the other application programs ahamilar behaiour. In dl cases

the network throughput has a critical region betweenl and T =0. 1.
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Figure 11 : Speedup of scheduling Tor 0. 1with various numbers of processors

Figure (11) shows a set of speed-up esrfor the lowest acceptable network throughput of

T =0. 1.For each number of processors an optimuastue of the threshold exists and the-cor
responding processor utilisation decreases when the number of processors increases, to drop
below the assumed acceptable limit of 50% for 16 processors or mereaWconclude that

the scheduling application with thevgn input and the gen data communication system with

(T =0.1)can hae an economical speed-up of 4.6 with 8 processors.

5.3.2. Optimalperformance

To calculate the optimal schedules for the remainder of our application progragsatiee
been supplied with the following input datéhe quick sort function has been applied to a list
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of 1024 values, resulting from the sine function applied to the first 1024 natural numbers. The
fast Fourier transform algorithm calculates the frequyeamel phase spectrum of a reallwed
function in the time domain. The parallel version of the algorithm has been supplied with a
data array of 512 elements, containing 8 periods of a sawt@vsfevm with an amplitude of

64. The real part of the 512-point transformwgh@eaks of the same height aerg eighth

point, corresponding to the flat frequgrngpectrum of a sawtooth. The input for theahy
algorithm was a square, diagonally dominant, tri diagonal matrix of 2&& fithe tidal model

has been run on a grid of ¥0L0 points representing an area of 1006 kuaring 5 time steps

of about 15 minutes simulated time. The initial conditions were set teessga water depth

of 30 metres and a slope in the water height of 3 metres in the x direction.

The best economical speedup for the application programs is presented in table (1). The first
row gives an mpression of the order of comgity that ranges from O(n) to O(n!). The second

row states the xecution time R;) of the sequentialersions of the applications on theveyi

input data. The third w shows the performance gain or losRs(/ R;) that is incurred by
transforming the programs into a form suitable for paraNeluation. Theinclusion of a
threshold mechanism and the addition of saedwichand own functions are responsible for
most of the performance loss. In case of the tidal model the transformation is particularly com-
plicated. It ivolves the introduction of streams to model concurrent processes andisiendi

of a space staggered grid into equal parts. The resulting program appears to be ficieate ef
version of the original program. \havenot been able to find axganation for this phenom-
enon. Table (1) presents the results of the tidal model in case of a bisection of the grid.

The fourth rev in table (1) presents the best speedup results that can be obtained with the
given goplication and a minimunt -factor (fifth row), provided that the processor utilisation
does not drop belo the supposed economically acceptable value of 50%. The minifaum
factor represents the data communication capacity that should at leastl&gleato achiee

the gven gpeedup. The next mwows show the optimal values of the threshold and the number

of processors that should be used under these circumstances. The penulinoathedable

gives an stimate of the number of nodes that is needed by the most heavily used processor; all
other processors needMer nodes. These estimates are based on a reducer that uses fixed size
nodes (each node has a tag and painter fields) and a reference counting garbage collector
With a non-reference countingmpage collector at least twice the estimated amount of store is
necessary to pvent garbage collection from requiring to much processing fime.

The last rav of table (1) presents the maximum speeddtifat will result if the communica-

tion performance ) grows to infinity and unlimited processors aneikable. The walues

shavn are based on the lowest threshold that we lieed in the experiments. Comparing this

row to the speedup figures shows that much of the potentalialble parallelism can be
exploited on a practical local memory architecture. The maximum speedup magdrettan

the number of processors used because the speedup refers to the sequential untraesformed v
sions of the programs and the transformation by itself may already speedup computations.
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Legend schedule quick sort| fast Fourier] Wang | tidamodel
Program transformation

Order of complexity | n!/ p! nlogn nlogn n rf

Sequential steps 530908 | 493205 | 262655 | 190930 |199644

Transformation loss 0.98 0.94 1 0.87 1.29
Best economical schedule

Economical speeduf 4.6 2.2 4.5 2.7 2.2

Minimum T -factor 0.1 1 1 1 0.1

Threshold 4 32 128 - -

Number of processofs 8 4 8 5 2

Minimum space

per processor (nodes) 7995 8223 5506 6213 5614

Unlimited process@ and no data communication cost
Maximum speedup | 15.2 | 2.8 7.4 | 3.7 2.5

Table 1 : Optimal performance of thedigpplication programs

The Wang partitioning algorithm s@s a set of linear equations that result in a tridiagonal
coeficient matrix. Because this algorithm has been designed for paradzition and as a
consequence lacks a sequential counter part, the transformation loss has to be interpreted dif-
ferently The eecution time Rg) of the Wang program applied to an undivided matrix has
been compared to the total number of reduction steps when the program is applied to the same
matrix divided in fie equal parts. The Wang algorithm and the tidal modeteh®en anno-

tated in such a &y that a fixed number of jobs is generated durkegwgion. This number is
determined by the transformation. The reason for doing so is that the grain size of the jobs
does not depend on the input data and can bd by the programmeBoth quick sort and the
schedule program generate jobs whose grain size depends on the calculations. In such cases
the number of jobs can not be fixed a priori and a threshold mechanism has to be included by
the programmeiin case of the fastdurier transform the number of jobs does not depend on

the calculations and the grain size of jobs could be fixed by a transformation into a program
without a threshold mechanism. Wever, due to the nature of the calculations a reverse-

sion of the algorithm with a threshold mechanism is much simpler teederi

6. Conclusions

Paallel graph reduction based on jobs is a useful concept. Wsatlivide-and-conquer appli-
cations and programs based on synchronous communicating processessteruonfa paral-

lel machine. The architecture of such a machine can be based on local store. Jobs are copied
from one processing element to anothat work is not duplicated. Even cyclic programs can

be made to benefit from parallelism on an architecture that does not support glpdaly c
graphs.
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Centralised control \@r the machine by the conductor is feasible because the interaction
between the applications and the central control is restricted to a minimum. The threshold
mechanism that we propose to regulate the grain size of parallel computati@ssteeestrict

such communications. Centralised control is al$eca¥e. The information about the beha

lour of the running application that igalable to the conductor enables it to schedule jobs in a
near optimal \ay. At each decision point the conductor has knowledge about the resource
requirements of the set of jobs that are currently being offered for consideration as parallel
grains. As soon as the system is sufficiently loaded with jolasrewuests may be refused, to
prevent the administration fromverflowing.

The job concept causes the process structure of a parallel computation to be strictly hierarchi-
cal. This maks high speed data communication possible, since the transport of a job or result
can be separated from synchronisation. The transactions with the condumter anall mes-

sages, which are transmitted when synchronisation occurs. The space to store these small mes-
sages is &ays available because the transmit operation is blocking. The jobs and results
transmitted after consulting the condugctoay contain a much lger volume of data that can

be transmitted without further synchronisation. In this case the space to store the message at
the recerer side is resergd before the transaction is started. Job and result transport is simple
enough to be implemented directly in hardware, allowing for a data communication speedup of
two orders of magnitude with respect to a software implementation. The separation of syn-
chronisation and communication in general purpose systems is not feasible since one can not
always afford to hae loth the producer and the consumer of a message to be delayed while
data is being exchanged. Another difference between ours and a general approachto concur
reng is that reducers may be considered both as client and a&s. $¢emce a request for ser

vice may safely be refused because the client is capable of servicing its own request. The cost
of such a refused request is merely the time necessary to send a message to the conductor and
wait for the reply The actual job graph is not transmitted in that case.

The results that we lia presented are based on a posteriori optimal scheduling. Rather than
building a full scale system, we Y restricted ourselves to a pilot implementation. The sched-
uling data are recorded during the run of an application and processed after the application has
been run. The assumptions about the numbervafahle processors are realistic, but the
parameters and relations that model the data communicatioorkedve a first approximation

that will be refined in future ark. Two aher differences with scheduling as it would be- per
formed on a fully implemented system are the acguodche parameters that determine the
decision making policand the time that the scheduling algorithm is allowed to spend on mak-
ing a decision.

We have shavn that under conseative assumptions with respect to the performance of the
data communication sub-system there is a situation where a processor utilisatien50P6

may be attained. Some applications are more critical in this respect than others because their
computational complexity is Veer in terms of the job and/or result size. The actual number of
processors that may be occupied depends on the application and the problem size. An
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interesting aspect of our proposal is that weehaanaged to escape from the computer sci-
ence tradition that a mecompiler should compile itself. Instead the heart of our system is
used as one of its applications.
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