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Preface

It was around the beginning of 1984 when Henk Barendregt took the initiative to raise funds 
for a project exploring the feasibility of a parallel reduction machine. This initiative proved to 
be a very fruitful one with many consequences, amongst which are my decision to  join the 
University of Amsterdam eventually in 1987 and the completion of this thesis, being the third in 
a row of theses born form the Dutch Parallel Reduction Machine Project.

When the Dutch Parallel Reduction Machine Project started in the late summer of 1984, I was 
employed  as  a  scientific consultant  at  the  computing  division of  the  Dutch  Water-Board. 
During one of the stimulating discussions I had with Bob Hertzberger in that time, he drew my 
attention  to  parallel  reduction  machines  in  general  and  the  reduction  machine  project  in 
particular. Several months later I was allowed to take part in the project on behalf of both the 
Water-Board and the University of Amsterdam.

The  interest  of  the  Dutch  Water-Board  was  mainly in  the  development  of  large  parallel 
simulation programs, whereas the University of Amsterdam contributed to  the project in the 
area  of  parallel computer  architecture.  The  present  thesis  that  arose  form this  mixture  of 
interests  covers  the  design of a  specialised parallel reduction machine where programming 
considerations play an important role.

Viewed in retrospect, the development of a parallel reduction machine has been very successful, 
considering the amount of criticism from both scientific and industrial side that had to be faced 
during the project. In the past four years much experience has been gained and a vast amount of 
knowledge in the area of reduction and its implementation has been acquired in the Computer 
Systems Department of the University of Amsterdam. Based on the results as reported in this 
thesis we expect in the next three to four years to design an improved version of the present 
experimental machine in which new problem areas concerning the exploitation of parallelism 
will be explored.

Hilversum, October 1989.
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Chapter I ______________________________________

INTRODUCTION - Parallelism in computer architectures



1 Parallelism in computer architectures

Speed  of  computation  is  an  essential  property  of  computers.  During  the  history  of  their 
existence the performance of computers has increased by many orders of magnitude, mainly 
due  to  constant  improvements  in  electronic  technology.  Apart  from  employing  faster 
technology  it  is  also  possible  to  raise  the  speed  of  computation  by  the  exploitation  of 
parallelism.  Instead  of  speeding  up  a  computation  by  increasing  the  speed  of  its  basic 
sequential operations, it is sometimes possible to divide a computation into several independent 
parts  that  may  be  simultaneously  computed  on  different  machines.  These  simultaneous 
calculations can result in a considerable reduction of the execution time that was needed for the 
original computation,  where the independent  parts  were  evaluated  one after  the  other.  An 
interesting difference between the two approaches to  increase computer performance is that 
theoretically there seems to be no restriction on the amount of parallelism that can be exploited, 
whereas sequential computation will eventually encounter fundamental physical limitations.

In  the  recent  past  the  possibility to  build parallel computers  has  become more  and more 
appealing. On the one hand, switching speed of electronic components has increased to such a 
height that the speed of light poses severe limitations on the physical length of interconnections 
in a computer. On the other hand, integration technology of semiconductors will soon reach a 
point  where a  complex conventional computer  architecture  only occupies a  fraction of the 
effective space on a silicon chip. One of the possibilities to  fill up the available space on a 
silicon chip is to design regular parallel computers, where a basic processor and communication 
design can be copied as often as required. These architectures are often called transparent-, 
scalable- or extensible architectures.

Although  there  is  no  theoretical  upper  bound  on  the  amount  of  parallelism that  may be 
exploited  in  an  extensible  architecture,  in  practice  the  cost  of  communication  may pose 
restrictions.  In  extensible  architectures  the  time  involved  in  communication  between  two 
arbitrary processors  is not  independent  of  the  total  number  of  processors.  For  a  scalable 
communication  design the  cost  of  message  transmission is  proportional to  the  number  of 
processors in the system. A useful measure with respect to the exploitability of parallelism is the 
grain-size  of  computations.  The  grain-size of  a  computation  may be  defined as  the  ratio 
between  the  computation  cost  and  communication  cost  to  perform  the  calculation. 
Traditionally,  fine-grain and  coarse-grain parallelism are  distinguished.  In  a  coarse-grain 
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computation  the  computation  cost  is much higher  than the  communication  cost  while the 
inverse is true for fine-grain computations.

In  the  past,  both  fine-grain and coarse-grain parallelism have been frequently exploited  in 
computer architectures. The use of pipe-lining in CPU's is an example of fine-grain parallelism. 
Small operations  like instruction-fetch,  decode,  operand-fetch and instruction-execution are 
performed in parallel as often as possible.

Also coarse-grain parallelism is used in conventional architectures. For instance disk operations 
may be executed by specialized processors, while the CPU continues with other tasks. Multi-
processor architectures have been used for twenty years now (e.g. Univac 1100 series), where 
the multiple CPU's execute independent sequential user-programs.

What is really new in todays research into parallel architectures, is the exploitation of massive 
parallelism. The increase in processing power envisaged by massively parallel architectures is at 
least two orders of magnitude compared to sequential execution on such an architecture. 

The  size  and  power  consumption  of  computers  impose  a  physical limit  on  the  maximum 
achievable  computational  capacity.  In  massively parallel  architectures  processors  have  to 
consume less power and have to be smaller then in single processor designs. The restriction on 
size and power consumption dictates the use of relatively slow semiconductor technology in a 
massively parallel multi-processor  architecture.  Therefore  the  computational  power  of  one 
processor in such an architecture is about  one tenth or less of the power of a conventional 
single processor  architecture  of  the  same size as  the  multi-processor.  The  exploitation  of 
parallelism should result in an ample compensation of this loss.

One of the major problems to effectively exploit the capacity of a massively parallel computer is 
how parallelism should be specified, or to put it differently: where does the parallelism come 
from? One of the possibilities is to choose a suitable programming language and to make use of 
all potential parallelism that is present in programs written in that language. Implementations 
based on this approach make use of the implicit parallelism present in the language.

For instance,  object oriented programming languages [XER81] are based on a computational 
model that seems to offer good opportunities to exploit implicit parallelism. The objects in this 
model can be considered as the implicit units of parallel computation. Two large projects in the 
Netherlands supervised by Philips (DOOM [ODIJ85,  ODIJ87]  and PRISMA [BEE89])  are 
based on the use of an object oriented language to program a parallel machine. Both projects 
provide evidence that the choice of a suitable computational model in the form of a computer 
language by no means guarantees that  massive parallelism is easily implemented.  The main 
problem is that the specification of parallel computations in the object oriented model does not 
state  anything about  the  grain-size of these computations.  In  both  projects  the  application 
program has to provide information on the grain-size of parallel computations. For instance, the 
parallel relational data-base application on the PRISMA machine uses one-fragment managers 
(each of which controls part of a relation) as the grains of parallel computation.
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It turns out that in the implementation of a language on a parallel architecture, there must be a 
precise  match  between  the  grain-size  of  parallel  computations  and  the  computation-
communication performance ratio of the physical machine. If such a match can not be enforced, 
either a large part of the machine stays idle or, on the contrary, it is flooded with fine-grain 
computations. Especially the last possibility occurs in the object oriented model.

A similar problem has been reported by the Manchester dataflow group [GUR87]. A special 
throttle  mechanism [RUG87]  had  to  be  incorporated  in the  data-flow machine to  prevent 
overflow of the token store.

The grain-size of computations cannot be determined by a compiler, because grain-size is an 
undecidable property of a computation. Though it might be possible to devise certain heuristics 
to approximate the grain-size at compile time, no successful attempts in this direction have yet 
been reported up to the author's knowledge. Many research projects have chosen to base the 
implementation of parallelism on explicit grain-size information in the application programs. 
The  programmer has  to  provide this  information by,  for  instance,  annotating coarse  grain 
computations in the source text of the program. Implementations based on this approach are 
said to make use of explicit coarse grain parallelism. Whereas most former research projects 
were based on the use of implicit parallelism [MAG79, GUR87, DAR81, HUD85],  several 
recent research projects included our own, have chosen only to  exploit explicit coarse grain 
parallelism [EEK88, MCB87, KEL79, VRE88].

A similar trend can be observed in the development of the fifth generation computer project in 
Japan. In the beginning of this project it was believed that merely expressing a program in a 
logical language would provide a sufficient amount of potential parallelism for a fifth generation 
computer  architecture.  However,  in  recent  practical  parallel  implementations  parallel 
computations are restricted by programmer annotations.

When only explicit coarse grain parallelism is exploited the impact of a particular programming 
language on the implementation of a parallel architecture becomes less important. The grain-
size of parallel computations is much more a property of the application program than of the 
programming language. When a certain algorithm is well suited for the annotation of coarse-
grain parallel computations in one language, this situation will not change if the algorithm is 
recoded in another language. In most implementations grain-size information is not used during 
compilation, but is merely passed to the runtime system where it is used for triggering parallel 
computations.  The programming language is transparent to  the annotations of coarse-grain 
parallelism. So what is the advantage of the use of a particular language in this situation?

We use functional languages for our parallel architecture because of the excellent properties of 
these languages with respect to program transformations. We will show in this thesis that even 
parallel  programs  have  to  be  modified  considerably before  annotation  of  explicit  parallel 
calculations becomes possible. Additional modifications may be necessary to  obtain the right 
balance between grain-size and architecture. These modifications can be elegantly performed by 
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(formal) program transformations when the application program is expressed in a functional 
language.  We  have  developed  a  number  of  program  transformations  that  allow  parallel 
application programs to be developed in a systematical way from (mathematical) specification 
to a well balanced version for a parallel architecture.

Using  functional  languages,  program  transformations  can  be  more  easily  generalized, 
formalized  and  automated  than  using  other  languages.  The  main  reason  for  this  is  that 
functional languages are referentially transparent. A language is called referentially transparent 
when multiple occurrences of a reference (variable) all denote the same value, independent of 
the  place  of  the  references  in  the  program  text  (neglecting  scope  rules).  Program 
transformations modify the syntactical appearance of the program. Therefore references may 
obtain  a  different  position  in  the  source  text  of  the  program.  Referential  transparency 
guarantees that the value of these references will not change.

Less formally expressed referential transparency means that once a variable obtains a certain 
value, references to that variable will always yield the same value. In particular this property 
forbids the use of an assignment operator,  because it would then be possible to  change the 
value of a variable by assignment, possibly resulting in different values for different occurrences 
of the same reference.

In  principle,  logical  languages  are  also  referential  transparent.  However,  in  contrast  to 
functional  languages,  all  implementations  of  logical  languages  contain  non-referential 
transparent  features  (referential opaque  features).  The  presence  of  these  features  (like the 
"cut-mark" in Prolog) make program transformations a lot more difficult.

Computer architectures that exploit all possibilities for parallel evaluation are called fine-grain 
architectures. In particular such architectures do not impose a lower bound on the grain size of 
parallel  computations.  In  contrast,  computer  architectures  that  only  exploit  parallel 
computations with a grain-size above a certain threshold are called coarse-grain architectures. 
The trend towards the exploitation of coarse grain parallelism that is observed in the Japanese 
fifth  generation  project,  the  DOOM  project,  the  PRISMA  project  and  several  reduction 
machine projects  increases  the  relevance of  our  own research into  coarse  grain extensible 
architectures,  in which from the beginning exploitation of parallelism was based on explicit 
annotation of coarse grain computations in the application program.

To show the viability of basic concepts underlying a parallel architecture, care must be taken 
with the measurements that are supposed to provide the evidence of successful operation of the 
architecture  in question.  For  instance,  in the  area  of  compilation techniques for  functional 
languages  the  efficiency of  the  proposed  method  is  often  demonstrated  with  performance 
results based on the "nfib" program [BRU87, JOH84, FAI87, MEY88]. These results cannot be 
considered of any real value,  because the proposed  compiler optimizations,  which seem to 
work for such toy programs, may fail to produce the same results in case of larger application 
programs. The reason for a different behaviour on larger programs is that  the optimization 
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algorithms are based on undecidable properties of the source program, like the amount  of 
sharing of expressions and the strictness of user-defined functions. The algorithms trying to 
derive information about  these properties perform much better  on simple programs than on 
complex ones.

For  the  same reason the  use  of  toy programs to  demonstrate  the  efficient  exploitation  of 
parallelism (either implicit or explicit), may produce unrealistic results. It is relatively easy to 
implement optimizations that produce good results for small programs.

Therefore we have based the performance analysis of our architecture on parallel programs of 
at  least  medium size.  To  support  the  construction  of  larger  parallel applications  we have 
developed two program transformation methods, corresponding to two basically different ways 
in which coarse grain parallelism may be obtained.

The first method, which we call data-partitioning, is applicable when a program specifies a 
coarse grain computation that may be split into several finer grains. The second method, which 
we  call  data-grouping,  can  be  applied  when  an  application  consists  of  many fine  grain 
computations that may be grouped into fewer but coarser grains. The data-partitioning method 
can  handle  divide-and-conquer  algorithms,  whereas  the  data-grouping  method  is  used  for 
programs written as networks of communicating processes.

How a given application program is transformed into a parallel version is illustrated in table 1. 
First, one has to determine if the application belongs to one of the two classes that we can deal 
with. If so, table 1 shows in which order transformations have to  be applied. The table also 
indicates to what extent the transformations are formalized, how they are called and in which 
chapter they are described.

data-grouping 
transformations
(chapter 7)

formalized data-partitioning 
transformations
(chapter 5)

formalized

1) communication lifting yes – --

2) job lifting specialized job lifting yes

3) grain size transformation specialized grain size transformation yes

4) own transformation no -- --

Table 1: transformations for data-grouping and data-partitioning

Although it appears from table 1 that step 2 and 3 of the data-grouping transformations are 
identical to  the corresponding steps in the data-partitioning transformations, they are in fact 
specialized  versions  of  the  latter.  A  program  resulting  from  a  communication  lifting 
transformation has such a specific form that specialized versions of the job-lifting and grain-size 
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transformations are justified (These specialised versions are called the sandwich transformations 
in chapter 7).

We have applied the transformations of table 1 to  a small set  of realistic applications.  The 
resulting parallel programs have been used to evaluate the performance of our architecture (see 
chapter 8).  The data-partitioning transformations produced parallel versions of e.g.  the fast 
Fourier  transform,  Wang's  algorithm  and  a  scheduling  program.  With  data-grouping 
transformations we constructed a parallel version of a tidal model of the North Sea.

None  of  the  transformations  has  been automated  so  far,  although the  formal descriptions 
suggest that a substantial part of the transformations may be implemented as tools assisting the 
programmer  to  create  parallel  programs.  The  construction  of  correctness  proofs  for  the 
proposed transformations is a possible subject for future research.

To analyse the performance of large application runs we have developed the method of hybrid 
simulation.  This method allows to  obtain realistic performance results for large application 
programs without having to go through a complete implementation of a parallel architecture. 
Lower layers of the architecture (i.e. layers close to the hardware) are actually implemented on 
the target machine. A realistic simulation of these layers would take an unproportionally large 
amount of computing time, effectively shutting off the possibility to measure large applications.

Higher layers are not implemented on the target architecture. Instead they are simulated on a 
general purpose sequential host computer. Data obtained by the simulation is used as input for 
the implementation of the lower layers on the target architecture. Measurements obtained from 
the target machine are fed back into a performance model of the overall architecture. Figure 1 
shows the flow of information for hybrid simulation. The simulation executes the application 
program and computes an execution profile that contains all data relevant to the lower level 
layers.  The performance model uses both the execution profile and the data  obtained from 
measurements on the target architecture.

 

Simulation of the  
higher layers 

Implementation of  
the lower layers 

Performance  
model 

Application Program Performance results 

Host computer 

Target architecture 

execution  
profile 

performance  
measurements 

execution  
profile 

Figure 1: Hybrid Simulation
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Hybrid  simulation  is  applied  in  chapter  8  to  evaluate  the  performance  of  our  parallel 
architecture described in chapter 3 and 4.

In this thesis the exploitation of parallelism in computer architectures is studied in relation to 
one specific computational model: the reduction model. This model has been chosen because of 
the  outstanding  properties  with  respect  to  program transformation  and  parallel evaluation 
strategies.  Although  logical  languages  are  claimed  to  have  the  same  properties,  parallel 
evaluation strategies turn out to be much more difficult to implement than in case of reduction. 
We have already mentioned the practical drawbacks of logical languages concerning program 
transformations.

The  work  reported  in this  thesis  provides  evidence  that  coarse-grain parallel reduction  is 
applicable to a wide range of application programs. We present an efficient mapping of several 
parallel functional programs onto a coarse-grain architecture. In addition we show that these 
programs can be developed in a systematical way using several transformations. By means of 
hybrid simulation, measurements are obtained for the developed programs on our experimental 
parallel reduction machine. Based on these results we present an analysis of the performance of 
this architecture covering the whole implementation trajectory.

To reduce the amount of work involved in studying the implementation of parallel reduction, 
two a-priory restrictions have been made:

At first, it was decided only to consider coarse grain parallelism. The reasons for this choice are 
of a practical nature. At the University of Amsterdam already much experience had been gained 
with coarse grain parallel architectures in the area of data-acquisition and filtering for high 
energy physics experiments. Because of the close collaboration with the physics department, it 
was relatively easy to construct a coarse grain parallel architecture based on the use of dual-
ported memories (see chapter 3 and 4).

The  second  decision  concerns  the  separation  of  sequential  reduction  and  the  control  of 
parallelism. The use of coarse-grain "strict argument" parallelism allows the design of a parallel 
reduction  model that  is valid for  all possible implementations  of  sequential reduction  (see 
chapter 5).  The  issues  covered  by this  thesis  are  centred  around  this  coarse-grain parallel 
reduction  model.  The  model  requires  annotation  of  parallel  coarse-grain  expressions  in 
application programs, but it does not specify how these expressions have to be (sequentially) 
reduced. Any sequential implementation of reduction can be plugged into the parallel model. 
The  decision  appeared  to  be  fruitful,  because  much  progress  has  been  made  in  the 
implementation  of  sequential  reduction.  These  results  can  be  directly  used  in  the 
implementation of our reduction model.
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1.1 Synopsis

Chapter 2 provides a short  introduction into the reduction model of computation.  Next,  an 
overview is  presented  of  the  various  ways  in  which reduction  can  be  implemented.  The 
overview  provides  the  reader  with  some  basic  information  about  the  implementation  of 
reduction that will be used in the subsequent chapter on parallel reduction architectures. The 
subject of implementing sequential reduction is not further pursued in this thesis.

Chapter 3 presents two models that will be used to describe respectively abstract- and concrete 
architectures. The concepts and terminology of these two models together with the concepts 
related  to  the  implementation  of  reduction  (chapter  2)  constitute  a  framework  for  the 
comparison of parallel reduction architectures. Chapter 3 contains a comparative description of 
some parallel reduction  machines,  within the  given framework.  Our  own architecture,  the 
Amsterdam  Parallel  Experimental  Reduction  Machine  (APERM)  is  contrasted  with  the 
described architectures by highlighting the major differences and similarities.

Chapter 4 presents a more detailed description of APERM. Special attention is paid to the data-
communication support based on dual ported memories. The advantage of the architecture with 
respect to the minimization of communication cost is discussed.

A coarse  grain parallel reduction  model  is  proposed  in chapter  5.  The  grains  of  parallel 
evaluation are called jobs. The model is referred to  as the job-based reduction model. The 
remainder of chapter 5 is devoted to the mapping of divide-and-conquer algorithms onto the 
job-based reduction model. Two program transformations are proposed to achieve this goal.

In chapter 6 a moderately sized application program is developed in a functional language. It is 
shown  that  a  mathematical  model  of  the  tides  in  the  North  Sea  can  be  systematically 
transformed into a coarse grain parallel functional program. The resulting program looks like a 
network  of  communicating processes.  The  transformations developed in chapter  5  to  map 
divide-and-conquer algorithms onto the job-based reduction model appear to be insufficient to 
deal with process networks.

In chapter 7 additional transformations are proposed to widen the class of application programs 
that  can profit from parallel evaluation in our  reduction model. Also applications written as 
(functional) process networks are now included. As an example of these transformations the 
tidal simulation of chapter  6 is mapped onto  the job-based reduction model. An additional 
application of a simulation of digital hardware is included in chapter 7, to  show that  also a 
collection of fine-grain  communicating processes can be mapped onto the job-model.

Chapter  8  shows  that  the  job-based  reduction  model  can  be  efficiently mapped  onto  the 
APERM architecture. Several aspects of the abstract- and concrete architecture of APERM are 
discussed.  Amongst  these  are  the  use  of  execution  profiles  of  application  programs  in 
loadbalancing decisions and a presentation of the abstract instruction set concerning process-
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management and communication. Next, a simple performance model for APERM is developed 
and is applied to the results of hybrid simulation. In this way the performance of the application 
programs developed in the chapters 5, 6 and 7 is evaluated.



Chapter II ______________________________________

INTRODUCTION - Implementation of reduction



2. Implementation of reduction

Most computer architectures are based on a computational model proposed by Alan Turing in 
the 1930's. The essential property of the Turing model is that computation is performed by a 
sequence of commands, that manipulate the state of the computation. Programming languages 
based on the Turing model are often called imperative languages. The word "imperative" is 
inspired by the property that the abstract machine provided by the language is "instructed" by a 
sequence of commands. Computer architectures based on the Turing model are often called 
Von  Neumann machines,  named  after  Johannes  von  Neumann,  who  replaced  the  infinite 
sequential-access memory of the Turing model by a random-access memory, containing both 
data and program.

In 1936 Alan Turing proved that  his model is equivalent to  the lambda calculus of Alonzo 
Church, in the sense that both models describe the same class of functions. Turing and Church 
tried to mould the intuitive notion of a "computable" function into concrete. The conjecture is 
that every computable function can be expressed in the lambda calculus. However, the intuitive 
notion of "computability" leaves the possibility open that  somebody might come along and 
compute  a  function  that  cannot  be  expressed  in the  lambda calculus.  The  inverse  of  the 
conjecture, namely that every function expressed in the lambda calculus can be computed, is the 
basis of computers.

Programming languages can be viewed as "syntactically sugared" versions of the underlying 
computational model. No extra power is added by a programming language, only the ease of 
expressing frequently occurring problems is increased. Languages based on the lambda calculus 
are  called  functional  languages and a program written in a functional language is called a 
functional program. From the equivalence of the models of Turing and Church it follows that it 
is always possible to translate a functional program into an equivalent imperative program and 
vice  versa.  Recently it  has  been  shown  that  the  compilation  of  functional  programs  into 
imperative code can produce very efficient results [JOH84, FAI87]. 

Although the models of Turing and Church are equivalent, they are very different in nature. For 
instance, the lambda calculus is not "imperative". There is no sequence of commands to  be 
executed, but merely an expression that has to be reduced (the computational mechanism of the 
lambda calculus is referred to as  reduction). Computational models like the lambda calculus, 
without the notion of a state that changes during time, are called declarative. In contrast to the 
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imperative model of Turing, a computation in such models is "declared" in a more or less static 
way.  Programming languages based on a  declarative model are  referential transparent  (see 
chapter 1). Once a reference denotes a certain value, there is no (assignment) mechanism that 
can change this value any more. All copies of the reference will denote the same value during 
evaluation of the program.

Another example of a declarative computational model is the interpretation of Horn-clauses by 
a computational mechanism called resolution [ROB65]. Languages based on Horn-clauses are 
called logical languages and the resolution mechanism is often referred to as inference.

In this thesis we confine our attention to  the reduction model of computation in relation to 
hardware- and software implementation aspects of parallel architectures.

2.1 Parallelism in functional programs

The development of parallel programs in the imperative model is relatively difficult.  Global 
state  information that  is present  in imperative programs has to  be distributed in some way 
amongst the parallel computations. After distribution, all computations still have the possibility 
to change any part of the global state. The programmer has to include explicit communication 
and synchronization instructions in the program to accomplish global state changes.  In general, 
both the division of the global state and the insertion of communication instructions are no easy 
tasks.

For functional programs the transition from sequential to parallel programs is less complicated. 
No  special  language  elements,  like communication  primitives  in imperative  languages,  are 
needed. This is because parallelism is implicitly present in a functional program. An example of 
a functional expression may clarify this point:

(3  +  4)  *  (5  -  2)

In the example the sub-expressions (3 + 4) and (5 - 2) may be evaluated in parallel. Although 
the example only shows a simple expression,  the observed independence of subexpressions 
holds in general: Due to  referential transparency, sub-expressions in functional programs are 
independent and may be evaluated in parallel. This parallelism is called implicit, because there is 
no  language-construct  that  indicates  which  expressions  are  valid  candidates  for  parallel 
evaluation.

Implicit parallelism can be exploited,  either  by making it  explicit in the source  text  of the 
program or by trying to detect it automaticly. In the first case the programmer is required to 
provide annotations, marking sub-expressions that can be safely computed in parallel. In the 
second case a compiler or a run-time system takes care of the parallelism. In both cases the 
correctness  of  the  program  is  not  affected  by  the  transition  from  sequential  to  parallel 
evaluation. 
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With respect  to  massively parallel computer architectures,  most functional programs do not 
exhibit a sufficient amount of implicit parallelism, or the parallelism is too fine grained to be 
exploited.  It  is necessary to  transform most  application programs to  make them suited for 
efficient  evaluation  on  a  parallel  architecture.  The  additional  complexity  of  these 
transformations  should  be  compared  with  the  effort  that  is  necessary  to  design  parallel 
programs in the imperative style. Because of the referential transparency, declarative languages 
and  especially  functional  languages  are  well  suited  for  the  development  of  program 
transformations. Chapters 5,  6 and 7 discuss transformation techniques that  can be used to 
obtain efficient parallel functional programs for a broad class of applications.

2.2 Reduction 

The reduction principle can be viewed as replacing expressions by other expressions, based on 
certain rules. In this view a functional program consists of a set of reduction rules and a main 
expression. During the evaluation of the program, the main expression is repeatedly rewritten, 
replacing sub-expressions as prescribed by the rules, until no more replacements are possible. 
The  expression is then said to  be  in  normal form and represents  the  final answer  of  the 
program. The action of performing one replacement is called a reduction step. An expression 
that can be replaced is called a redex (reducible expression).

The order  in which the reduction rules are applied is known as the reduction  strategy.  For 
instance one may have sequential or  parallel strategies.  An important  property of practical 
reduction systems is the fact that all reduction strategies yield the same answer, provided the 
reduction process terminates. Reduction systems having this property are called Church-Rosser 
or  confluent. In principle the Church-Rosser property allows any degree of parallelism during 
the evaluation of a program. The possibility of non-termination spoils the perspective of having 
the complete freedom to rewrite all reducible expressions in parallel. Some of these expressions 
might fail to terminate, whereas they will later appear not to be needed in the construction of 
the final answer. If a parallel architecture happens to assign non-terminating expressions to all 
of the available processing power, the program will never terminate, while there still exists a 
reduction path to the final answer of the program. Thus all reduction strategies that compute a 
normal form will compute the same normal form. However, not all strategies arrive at a normal 
form.

Most  sequential  implementations  of  reduction  use  one  of  the  following  two  reduction 
strategies: normal order reduction and applicative order reduction. The normal order strategy 
takes the leftmost outermost redex as the next expression to be reduced. While the program has 
not  yet  reached its  normal form,  the  leftmost  outermost  redex is always uniquely defined. 
Therefore normal order reduction implies sequential evaluation. The applicative order strategy 
takes one of the innermost redexes as the next expression(s) to  be reduced, for instance the 
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leftmost innermost one when sequential evaluation is aimed for. Some practical strategies for 
parallel reduction are discussed in section 3.3.

Normal order reduction has better termination properties than applicative order reduction. The 
leftmost outermost redex is always needed to construct the answer of the program. In contrast, 
an innermost redex may not be needed in the final answer (for instance when it is part of a 
conditional expression). An applicative order reduction strategy risks to get stuck, evaluating a 
non terminating expression that is not needed for the answer of the program.

As an example of reduction rules we will briefly illustrate  the  α-  and  β−reductions of the 
lambda calculus. Consider for instance the following reduction step:

(λx  .  x  y  x)  a → a  y  a

In the lambda calculus terms are built by juxtaposition of variables (like x, y   and a) or other 
terms. The juxtaposition represents function application. A term built from two variables like 
x y means the application of the function  x to  the argument  y.  A term like  x y x should be 
interpreted  as  (x y) x :  the  function  (x y) applied  to  the  argument  x:  Thus  juxtaposition 
associates to the left.

Prefixing an expression by a lambda followed by a variable and a dot, like in λx . x y x, is called 
abstraction. It means that a function is created, where the variable x will later be replaced by the 
argument that will be given to this function. Thus applying λx . x y x to a variable a yields a y 
a. This substitution is called β-reduction. The variable x is called bound by the lambda prefix. 
The variable y is called a  free variable in the term λx . x y x, because it is not bound by any 
lambda.

Although the substitution mechanism implied by β-reduction may seem rather simple, there is a 
subtle difficulty that is illustrated by the next example, where two consecutive β-reduction steps 
are executed incorrectly:

(λx . (λy . x  y  x))  y  b → (λy . y  y  y)  b → b  b  b

In the first step the free variable y becomes bound by accident, just because it is substituted in a 
lambda term that happens to be an abstraction of y. Renaming the inner lambda abstraction (for 
instance  y  to  z)  prevents  the  accidental  binding,  without  changing  the  meaning  of  the 
expression:

(λx . (λy . x  y  x))  y  b → (λx . (λz . x  z  x))  y  b
→ (λz . y  z  y)  b → y  b  y

Before  β-reduction  is  performed  the  term  λy . x y x  is  first  replaced  by  λz . x z x,  which 
prevents the undesired binding that  would otherwise arise during the first substitution. This 
renaming is called α-reduction.
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The substitution mechanism implicated by β- and α-reduction is probably too complicated to 
serve as a primitive machine model [BER75,  KLU83].  It  can be shown that  under  certain 
conditions α-reduction can be omitted for sequential reduction [PEY87a]. However, if parallel 
reduction has to be possible, both the α- and the β-reduction must be implemented.

2.3 Implementation techniques

The implementation of reduction has already a long history. In 1960 the language LISP was 
proposed by McCarthy, as an implementation of the lambda calculus (without α-reduction!). In 
1963  Landin  published  an  abstract  machine  called  the  SECD  machine,  and  presented  a 
compilation scheme for LISP to this machine. The abbreviation stands for Stack, Environment, 
Code and Dump. In the next section the environment model will be discussed as one of the 
possible implementations of β-reduction.

In 1971 Wadsworth proposed to implement the lambda calculus by the use of graph-reduction 
[WAD71].  The  graph structure  allows shared  sub-expressions and saves computation  time 
when the shared expression contains redexes. Turner combined in 1979 graph-reduction with 
combinatorial  logic  to  implement  a  functional  language  of  his  own  design,  named  SASL 
(St. Andrews Static Language).  He  was  the  first  who  circumvented  the  difficulties  in 
implementing β-reduction by the use of combinators [TUR79]. The next improvement in the 
implementation technique of functional languages was to replace the fixed combinators used by 
Turner with general program-derived combinators.  This invention due to  Hughes [HUG82] 
was almost immediately followed by the idea to  implement program-derived combinators by 
compilation  to  an  abstract  machine.  Compiled  graph-reduction  was  first  implemented  by 
Johnsson and Augustson [JOH84], using an abstract  machine that was similar to  the SECD 
machine of Landin.

Before discussing the implementation techniques of parallel reduction we will first describe the 
essentials of the implementation methods that  have been mentioned in the historical outline 
above.

2.4.1 Basic reduction mechanisms

Three major techniques exist to implement the substitution mechanism that is fundamental for 
all reduction  systems.  They are  called  string  reduction,  graph  reduction and  environment 
reduction. The β-reduction rule of the lambda calculus will be used in this section to illustrate 
the difference between the three methods. The techniques differ in the way the substitution 
process  is  implemented.  String  reduction  performs  substitutions  literally,  duplicating 
expressions (and work!) if needed. Graph reduction avoids the duplication of expressions by 
substituting  only  pointers  to  expressions.  Finally,  environment  reduction  performs  no 
substitutions at  all, but adds to  each expression a table that  associates the names of bound 
variables, occurring in that  expression with the values to  which the variables are bound. To 
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illustrate  the  difference between the  three  substitution methods  more  clearly we show the 
reduction of the following example for each method:

(λx . x  y  x)  a → a  y  a

2.4.1.1 String reduction

The way in which the reduction example is presented already illustrates the technique of string 
reduction.  In  the  reduction  step  the  variable  x is  bound  to  the  expression  a.  Next,  each 
occurrence of x is replaced by the literal text (string1) of a. The example also shows that the 
string a is duplicated by the substitution process.

To  compare  string  reduction  with  the  other  two  techniques  figure  1  shows  a  graphical 
illustration  of  the  same substitution.  This graphical representation  of  lambda terms  shows 
explicitly the presence of function applications in the form of apply nodes (indicated by an @). 
Remember that  a space in for instance  (x  y) means: apply  x to  y.  Figure 1 also shows an 
explicit node for each lambda abstraction.
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Figure 1: String reduction of (λx . x  y  x)  a  →  a  y  a

The dashed arrow in figure 1 indicates the rewriting of the tree structure on the left-hand side 
to a new tree structure on the right-hand side. The top nodes of both trees have been drawn 
within a box to indicate that they are both the same physical node, representing the value of the 
expression. All other  nodes on the right-hand side of the arrow (included the nodes in the 
subtrees a, y and a) are new. In particular the subtree a has been copied twice. This duplication 
of expressions during the substitution process is the reason that string reduction systems have a 
poor performance. Especially in recursive functions duplication can give rise to an exponential 
growth  of  work.  In  reduction  systems that  use  an  applicative order  strategy,  the  pain of 
duplication is relieved somewhat. The expressions to be duplicated are first reduced to normal 
form (because they contain innermost redexes) and then duplicated. The normal form of an 
expression contains no  more  work,  and  thus  only data  is duplicated.  In  chapter  5  special 
attention is paid to the issue of avoiding duplication of work in our parallel reduction model 
that is partly based on string reduction.

1 In this context strings are always structured objects in which e.g. brackets indicate the structure.
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2.4.1.2 Graph reduction

Figure 2 illustrates graph-reduction of  λ-terms as proposed by Wadsworth [WAD71]. In the 
reduction step of figure 2 only one new node is created to build the graph on the right hand side 
of the dashed arrow. This new node is the apply node below the top node. All other nodes are 
shared with the graph on the left hand side of the arrow (Alhough the top nodes of both graphs 
have been drawn seperately, they are the same physical node, indicated by boxes as before). 

The algorithm proposed by Wadsworth tries to share as much of the original graph as possible. 
In figure 2 this is illustrated by the sharing of node y. On the right hand side a pointer to node y 
is used instead of creating a new instance of the whole subgraph rooted at y, as would happen 
with string reduction.

If sharing is already present in a graph it is maintained by the reduction algorithm. In figure 2, 
sharing of node x on the left hand side results in sharing of node a on the right hand side. The 
substitution of a into x, is mechanically performed by storing twice a pointer to a in both apply-
nodes of the right hand side graph.
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Figure 2: Graph reduction of (λx . x  y  x)  a → a  y  a

It should be noted that the graph on the left hand side of the dashed arrow can not be discarded 
after the reduction step (i.e. "garbage collected"). As graph reduction creates sharing of nodes 
(node y in the example), any node of the left hand side graph may already be shared before the 
reduction step begins. To recover storage space occupied by those parts of the program graph 
that are no more referenced a garbage collection algorithm has to be used.

The sharing of bound variables in a lambda expression (x in the example) and the preservation 
of  this  sharing  by the  graph  reduction  algorithm,  is  the  reason  that  work  will never  be 
duplicated, as was the case in string reduction. Graph-reduction can therefore be performed 
efficiently, even when reduction is performed in normal order.

2.4.1.3 Environment reduction

Environment reduction is used in most LISP-interpreters.  The  environment is a special data 
structure in which variable names are associated with their values. On the left hand side of 
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figure 3 the application node below the lambda node contains such an environment, in which 
the variable y is bound to the value 2. This binding has been established by a former reduction 
step. The current reduction step that is illustrated in figure 3 copies the application node below 
the lambda node into the root node, extending the environment with the information x = a.

In  contrast  to  graph reduction  (and  string  reduction),  environment  reduction  performs  no 
substitutions when a lambda expression is applied. Instead the environment is extended with the 
value of the variable that is bound. In figure 3, the right hand side graph is constructed without 
creating any new nodes.

Although it seems that no substitution is performed, the environment has to  be dereferenced 
when the value of a variable is needed. The reduction process as illustrated in figure 3, is only 
part of an environment based reduction system. The way in which the environment is built and 
dereferenced forms a major part of the (in)efficiency of such a system.
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Figure 3: Environment reduction of (λx . x  y  x)  a → a  y  a

A mechanism to avoid the use of names in the environment has been proposed by De Bruijn 
[BRUI72]. The variables in an expression are replaced by a number that indicates the lambda to 
which the variable belongs. This number is equal to the number of lambda symbols encountered 
on the way up in the graph, form the variable up to (but not including) the lambda symbol to 
which it belongs. For instance λx . (x (λy . x y)) becomes λ . (0 (λ . 1 0)). The lambda symbols 
become anonymous, and the variables are a kind of relative pointers to the lambda symbols. 
Therefore it seems as if α-reduction is no longer needed. In stead, a renumbering of variables 
can be performed in substituted terms. However, this is computationally just as expensive as α-
reduction.

De Bruijn numbers can be considered as an offset in the environment,  when the value of a 
variable is required.  This property is for instance used by Curien in his categorial abstract 
machine [COU85].

The implementation of functional languages by a combination of De Bruijn numbering with 
environment reduction and an eager reduction strategy is very similar to the implementation of 
an imperative language like PASCAL on a stack based abstract machine. The environment that 
is created by the lambda applications is equivalent to  the stack-frame that  is created by an 
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imperative function call.  In both cases function arguments  are  first  evaluated  before being 
added to  the environment. Variables in an expression are replaced by offsets in the run-time 
created environment. It is not surprising that compilers for  eager functional languages generate 
code with the same efficiency as is usual for imperative languages.

2.4.2 Combinator reduction

In its full generality the process of β-reduction appears to be difficult to implement. However, 
more elementary substitution rules can be used to achieve the same effect as  β-reduction. In 
1924 Schönfinkel [SCHÖ24] presented a calculus of functions (in which he also introduced 
higher order functions and partial application, later unfortunately called Currying) based on a 
set of three elementary functions (verSchmeltzungs-, Konstanz-, Unverträglichkeitsfunktion: S, 
C and U). He showed that any formula in first order predicate calculus could be transformed 
into an expression merely consisting of applcations of these elementary functions. Following 
this idea, it can be proved that expressions based on a fixed set of simple lambda-terms (e.g. 
only the S and C of Schönfinkel) have the same computational power as the lambda-calculus. 
These  simple  lambda  terms  have  been  called  combinators,  because  they  only  specify 
combinations of their arguments.

Barendregt [BAR84] defines combinators as lambda terms that do not contain free variables 
(such terms are also called  closed terms).  However, combinators used in practice are more 
restricted.  To  simplify mechanical  interpretation  of  combinators  by rewrite  rules,  lambda 
abstractions  inside  a  combinator  body  are  not  allowed.  Thus,  a  practical  combinator 
corresponds to  a closed lambda expression, in which all lambda abstractions occur  directly 
concatenated to left side of the expression, like: λx. (λy. (λz. ... )).

The S,  K and I combinators proposed by Schönfinkel (apparently, the C combinator has later 
been renamed to K) are equivalent to the following lambda terms:

S = λx . (λy . (λz . x  z  (y  z)))
K = λx . (λy . x)
I = λx . x

From the point of view of mechanical interpretation, combinators can also be considered as 
elementary rewrite instructions of an abstract  reduction machine. To illustrate this view, we 
show the behaviour of the S combinator as implied by the definition of S as a lambda term. An 
application of the S combinator to three arguments (a, b and c) is replaced by the equivalent 
lambda expression:

S  a  b  c = λx . (λy . (λz . x  z  (y  z)))  a  b  c

The lambda expression can be reduced, applying three β-reductions (multiple β-reductions are 
indicated by →* ):

λx . (λy . (λz . x  z  (y  z)))  a  b  c →* a  c  (b  c)
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When we conceive the operation of the  S combinator as a single action instead of three  β-
reductions,  we obtain the view of a  rewrite mechanism. The reduction of (S a b c)  is now 
defined as a single rewrite rule with the following pattern:

S  a  b  c → a  c  (b  c)

A rewrite rule specifies how an expression is textually rewritten to another expression by giving 
two  patterns connected by an arrow. The left-hand side pattern consists of the name of the 
rewrite rule (S) plus a number of variables (a,b,c) that have to match a given expression. For 
instance the expression: S (K u v) w (S u)  has to be rewritten in the following way:

S  (K  u  v)  w  (S  u) → (K  u  v  (S  u))  (w  (S  u))
S        a       b      c →       a          c       (b       c   )
left hand side rewrites to right hand side

The variables a, b, and c on the left hand side of the S-rule can match arbitrary expressions. In 
the example a matches (K u v), b matches w and c matches (S u). The right hand side of the S-
rule specifies the resulting expression, when the variables are replaced by the expressions to 
which they were matched.

Interpreted as rewrite rules the S, K and I combinators constitute the following rewrite system:

S  a  b  c → a  c  (b  c)
K  a  b → a
I   a → a

This rewrite system is sufficiently simple to be considered as an abstract machine model that 
may be implemented on a concrete machine architecture.

All closed lambda terms can be translated to terms only containing the S, K, and I combinators. 
For example the expression used in the first section becomes:

(λx . (λy . x  y  x)) = S  S  K

An application of this lambda expression can be reduced according to the given rewrite rules 
for S, K, and I :

S  S  K  a  b → S  a  (K  a)  b → a  b  (K  a  b)→ a  b  a

Exactly the same result is obtained in four rewrite steps as would be obtained by performing the 
two  β-reductions in the original lambda term. Because the rewrite actions described by the 
combinator rules are less complex than β-reduction, more rewrite steps are required.

In 1979 Turner [TUR79] published an efficient compilation scheme to translate the functional 
language  SASL into  a  fixed set  of  a  few dozen combinators,  all very similar to  the  SKI 
combinators. Turner also proposed an abstract graph reduction machine based on rewrite rules 
associated with the combinators. Inspired by this technique, a number of machine architectures 
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have been constructed or simulated (SKIM [CLAR80], NORMA [SCH86]). Also SKI-based 
parallel string reduction machines have been proposed (COBWEB [SHU85]).

2.4.3 Lambda lifting

It was soon realized that the granularity of the rewrite actions specified by the SKI-combinators 
is  too  fine  to  be  implemented  efficiently in  hardware  (sequential  or  parallel).  It  appears 
[HAR89] that  each SKI-type reduction produces an intermediate result that  is largely taken 
apart again in the next reduction step. The storage and reclamation of these intermediate results 
can be avoided if larger grain combinators could be devised.

Hughes proposed an algorithm to derive larger combinators from the source text of the user 
program [HUG82].  He  called  these  program-derived  combinators  super-combinators.  The 
rewrite  behaviour  of  these  combinators  depends  on  the  contents  of  the  user-program. 
Therefore,  the set  of combinators has become variable (in contrast  with the fixed SKI-set), 
which seems a disadvantage for the design of special architectures.

A practical algorithm to  derive combinators  from the user  program has been proposed by 
Johnsson [JOH85],  called lambda lifting. With the technique of lambda lifting, a functional 
program can be converted into a set of possibly recursive, coarse grain combinators. Consider 
the following definition of a function F in which H is a combinator that has been defined before 
(and is treated as a constant):

F  =  (λy . H  (λx . y))

The body of F contains a lambda expression and is therefore not a practical combinator (F can 
not be considered as a rewrite rule because at the time of rewriting it is not known to which 
value x will be bound).  The nested  lambda expression  (λx . y) is not  a  combinator  either, 
because it  contains a  free variable  y.  The  idea behind lambda-lifting is to  convert  all free 
variables into bound variables. In the example this is done by adding a lambda abstraction to 
bind y in the inner lambda term and applying the new abstraction to the variable y:

replace (λx . y) by (λy . (λx . y))  y

Applying this conversion to the body of F yields the following definition:

F  =  (λy . H  (λy . (λx . y))  y)
The meaning of the function F has not been changed, but now the sub-expression (λy . (λx . y)) 
fulfils the criteria of a combinator and can be lifted out of the definition of  F. If we call the 
lifted expression G, the following result is obtained:

F'  =  (λy . H  G  y)
G  =  (λy . (λx . y))
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Also F' has become a valid combinator, because the body of F' contains the combinator  G in 
stead of the original lambda expression. As before, combinator names (H and G inside F') are 
considered as constants.

The function  F has been converted into a set of combinators:  F',  G. These combinators can 
now be interpreted by an abstract  rewrite machine, in the same way as the SKI combinators 
were interpreted in Turners machine. The grain size of the program-derived combinators is 
larger, but the set of combinators is not fixed any more, because the combinator definitions 
derived by λ-lifting depend on the contents of the user program.

The advantage of the lambda lifting transformation is that the resulting combinator definitions 
can be considered as locally confined, coarse grain rewrite actions. When the left hand side of a 
rewrite rule has been matched to  a part  of the main expression, the right hand side pattern 
together with the obtained bindings for the variables constitute a coarse grain of computation 
that may be well suited for distribution in a parallel architecture. The presence of free (global) 
variables would complicate parallel reduction, because the value of such a free variables may be 
determined by other (rewrite) processes. Synchronization and communication may be needed in 
the middle of a rewrite action, when the value of such a free variable is needed. Combinators do 
not have free variables (all variables of a combinator are bound before rewriting is performed) 
so a rewrite action can be completed without intervening communication.

The grain size of program-derived combinators as they are produced by lambda lifting, may be 
so large that a significant opportunity for parallel evaluation is lost. To increase the amount of 
available  parallelism,  Hudak  proposes  another  transformation,  which  generates  finer  grain 
combinators that are guaranteed to have no parallel sub-structure [HUD85]. These combinators 
are  called  serial-combinators. In  chapter  5  serial combinators  are  compared  with the  job-
concept, which is proposed as an essential part of our parallel reduction model.

2.4.4 Term rewriting

Pattern matching is considered to be an important feature in functional languages. It increases 
the readability of functional programs. Functions are only capable to  generate one result. In 
large programs function-results become very complicated structures. In general these structures 
have to  be taken apart  in order to  provide input for other functions. Pattern matching is an 
elegant mechanism to  specify in a function definition which parts  of the input structure are 
going to be used.

Although pattern matching can be compiled to nested conditional expressions, it can also be 
considered  as  an  essential part  of  the  computational  mechanism. The  inclusion of  pattern 
matching in rewrite rules results in a so called term rewrite system. The rules are called Term 
Rewrite Rules,  because both the left-hand side and the right-hand side of the rules may be 
general terms. Consider for example the definition of a rule that reverses both elements of a 
Cons-pair:
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Reverse  (Cons  x  y) → (Cons  y  x)

The  expression  looks  like a  combinator  definition,  but  the  argument  of  Reverse is  not  a 
variable,  but  a  term:  Cons x y.  When an expression is rewritten  according to  the  rule  for 
Reverse,  the  argument  to  Reverse  has to  be matched against  the  pattern  Cons x y.  In this 
pattern  the  variables  x and  y match  any expression,  but  the  function identifier  Cons only 
matches Cons:

Reverse  (Cons  (Cons  3  4)    5) → (Cons   5  (Cons  3  4))
Reverse  (Cons             x          y) → (Cons   y          x         )
left hand side rewrites to right hand side

During the pattern match the variable x is bound to  the term Cons 3 4, and the variable y is 
bound to 5.

Because a pattern might fail to produce a match, a set of alternative rules with the same name 
but different patterns is allowed in a term rewrite system. With such a set of alternative rules 
often complicated nested conditional expressions can be avoided. In general, the use of rules 
with alternative patterns considerably reduces the amount of conditional expressions compared 
to pure combinator systems. However, in terms of performance it remains questionable if the 
advantage  of  less  conditional  expressions  outweighs  the  increased  complexity  of  the 
computational  mechanism by the  pattern  match  algorithm (compared  to  pure  combinator 
rewriting).

Combinators can be considered as a special case of term rewrite rules. A combinator is a term 
rewrite rule, where the arguments of the rule are only allowed to be variables instead of general 
terms. Within the context of the Dutch Parallel Machine Project the research group in Nijmegen 
has pursued the approach of using term rewriting as the basic model of computation [BAR87]. 
For sequential machines they have been able to  show that  is is possible to  implement term 
rewriting efficiently via graph reduction.

2.4.5 Compiled reduction of combinators

A fixed set  of combinators  can be implemented by manually translating the  rewrite  action 
corresponding to  each combinator  into  the machine language of a  given architecture.  This 
results in a fixed set of machine language functions, one for each combinator. This approach is 
not practical for program-derived combinators because the manual translation would have to be 
repeated  for  each new program. A mechanical translation scheme has to  be found to  map 
program-derived combinators onto a given architecture. Several solutions to this problem have 
been described in literature [JOH84, FAI87, BRU87]. Some of these proposals introduce an 
abstract  machine  that  is  oriented  towards  graph  reduction.  The  abstract  graph  reduction 
machine designed by Johnsson, called the G-machine (Gøthenborg-machine), has been seriously 
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considered as a candidate for a special (sequential) architecture. The proposal by Fairbairn is 
very close to a conventional stack machine.
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3 Architectures for parallel reduction

The implementation techniques discussed in the  previous chapter,  can be used to  map the 
reduction model of  computation  onto  a  concrete  computer  architecture.  To  compare  such 
mappings for  several reduction machine designs, we introduce  two  models to  describe the 
hardware- and software architecture of (parallel) machines.

In  addition  to  the  implementation  techniques  for  reduction,  these  two  models  introduce 
architectural concepts that we need to construct a uniform framework for the comparison of 
parallel reduction  architectures.  The  goal  of  this  qualitative  comparison  is  to  identify the 
essential aspects  in which our  own reduction architecture  differs from related machines. In 
sections 3.1, 3.2 and 3.3 an architectural reference framework is established. In Section 3.4 
several  parallel  reduction  machines  (including  our  own  architecture)  are  compared  with 
reference to  the framework. Finally, section 3.5 presents some design considerations for the 
architecture of our reduction machine. The discussion in chapter 3.5 supplements other design 
considerations in chapter 4.

3.1 Architecture models

Computer  architectures  can  be  considered  from  at  least  two  different  viewpoints.  An 
architecture can not only be seen as a layered structure of hardware components, but may also 
be viewed as a hierarchy of abstract machines.

The first view is reflected in the hardware architecture model of figure 1. This model describes 
the  structure  of  physical  objects  that  make  up  a  computer.  When a  number  of  physical 
components perform a certain distinct function, this group of objects will appear as a basic 
element in the next higher layer of the model.

The second view gives rise to the software architecture model of figure 1. This model describes 
the structure  of the instuction code  that  is stored  in the computer.  When a  piece of code 
performs a certain distinct function, it becomes a basic instruction in the next higher layer of the 
model.
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hardware architecture model software architecture model
functional language layer
reduction machine layer

Program Memory Switch layer abstract machine layer
Register Transfer layer machine language layer

micro-programming layer
logic layer
circuit layer
.....

Figure 1: A hardware and software architecture reference model.

Most  proposals for  parallel reduction machines do  not  pay much attention to  architectural 
models. Consequently there is no universal agreement, neither on terminology nor on models 
for architectures.

We adopt a model from Bell and Newell [BEL71, BEL79] for the hardware architecture. The 
model  used  for  the  software  architecture  is  similar  to  the  one  described  by Tanenbaum 
[TAN84],  but  in this context  the layers and terminology are specially adapted to  reduction 
machines.  A  relation  between  the  two  models  is  suggested  in  figure  1,  by  drawing 
corresponding layers of both models at the same height. The relation will be explained during 
the description of the software  architecture  model. First,  we shortly describe the hardware 
architecture model.

On the lowest level of the hardware model, called the  circuit layer, a computer consists of 
passive and active electrical circuits. The behaviour of the machine is described in voltages and 
currents. On the next higher level, the logical layer, an architecture is represented in terms of 
logical circuits. The behaviour of these circuits can be described by discrete states, like "true" 
and "false". The representation on the logical level uses no information typically belonging to 
the circuit layer, like current or voltage. In other words: the logical layer abstracts away from 
electrical characteristics.

In the third layer a computer is viewed as a collection of registers and arithmetic functions 
operating on the contents of these registers. The notion of boolean values of the previous layer 
is now replaced by the concept of binary numbers. The layer is called the  Register Transfer 
layer (RT-layer). The description of an architecture on this level is a collection of rules that 
specify the transfer of numerical values between registers and functional units. The rules are 
triggered by conditional expressions on the state of the machine.

On the highest level a hardware architecture can be considered as a collection of processors, 
memories, communication switches, input-output  controllers etc. The layer corresponding to 
this level has been called  PMS -layer, which is an abbreviation of the three most important 
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components on this level: Processors, Memories, Switches. The PMS-layer presents the overall 
structure of a computer in such a way that performance aspects can be easily identified. Typical 
parameters  of  this  layer  are  the  rate  of  data  transfers,  the  size of  register  banks,  caches, 
memories, the capacity of processors etc.

It is interesting to note that several years after Bell and Newell proposed the model, functional 
units on the RT-level became available as LSI-circuits.  Nowadays, even modules on the PMS-
layer are integrated into VLSI designs. In future on-going miniturization will give rise to the 
integration  of  several  PMS-functions  into  one  module.  The  GAP-chip  [DAV84],  which 
contains 72 simple processors connected into an array structure,  is an early example of this 
trend. May be such a development leads to the necessity to introduce a layer above the PMS-
layer, in which complete sub-architectures are distinguished as basic components.

All layers of the hardware model always represent a parallel machine. Each layer describes the 
behaviour of the architecture with respect to time. At any instant of time many actions may take 
place in parallel. The concept of a sequential machine only exists in the software architecture.

The second view of a computer  architecture,  has been proposed by Tanenbaum [TAN84], 
although it is claimed by Bell, Mudge and McNamara [BEL79] that the idea is due to J.V. Levy 
(1974). In this view the software architecture of a computer is considered as a hierarchy of 
interpreters (or compilers) of abstract machines.

The lowest layer of the software model describes a computer as a collection of basic sequential 
machine instructions. Therefore it is called the  machine language  layer. The instructions are 
interpreted by a piece of hardware that is specified on the RT-level. That is why the machine 
language layer in figure 1 is drawn on the same height as the RT- layer of the hardware model. 
The illustration stresses the fact that the machine language layer corresponds to the RT-layer.

Tanenbaum [TAN84] distinguishes a layer below the machine language layer, called the micro-
programming  layer.  However,  this  layer  is  not  applicable  to  all  architectures.  Micro-
programming  can  be  viewed  as  an  implementation  of  the  RT-level  specifications  of  the 
hardware model. Other (and faster)  implementations exist on this level to  achieve the same 
result. In modern RISC designs the micro-programming layer has been abandoned in favour of 
a lower level (sequential) machine language layer.

The  next  layer  of  the  abstract  machine  architecture  is  called  the  operating  system layer 
[TAN84].  In  conventional  machine  architectures  this  layer  is  implemented  by a  machine 
language  program,  called  the  operating  system.  In  experimental  architectures  only certain 
functions of a conventional operating system are actually implemented. The abstract machine 
model that is provided on this level may be quite different from the machine model offered by 
conventional operating systems. Therefore we prefer to  call this layer the  abstract machine 
layer.
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The abstract machine can be considered as a programming model corresponding to the PMS-
layer  of  the  hardware  model.  The  machine language  layer  is  extended  by instructions  to 
support,  for  instance,  process management,  memory management,  communication and load 
distribution. These activities correspond to components that are distinguished in the PMS-layer 
of the hardware architecture. Therefore the abstract machine layer in figure 1 is drawn at the 
same height as the PMS-layer.

The third layer of the software model is called the reduction machine layer. On this level the 
basic reduction mechanism is supported by a suitable abstract instruction set (e.g. combinators, 
G-code).  The instruction set  may be compiled to  instructions of the abstract  machine layer. 
Older  proposals  for  reduction  architectures  [TUR79]  use  an  interpreter  to  implement 
operations of the reduction machine layer.

Special hardware reduction architectures like the G-machine [KIE85], SKIM [CLAR80] and 
NORMA [SCH86] provide an instruction set on the machine language level that is specially 
tailored to  support  operations of the reduction machine layer. This optimization is primarily 
reflected in the RT-layer of the architecture and in some respects also in the PMS-layer, e.g. a 
parallel garbage collection processor.

The highest layer of the software architecture model is called the  functional language layer. 
Although many functional languages exist, they do not give rise to differences in the reduction 
machine layer that are significant from the architectural point of view.  After compilation to the 
reduction machine layer, most aspects of a functional language that are important for the lower 
layers of the implementation are still manifest (e.g. normal order semantics, user-annotations).

The  implementation  techniques  for  reduction  as  discussed  in  the  previous  chapter  (e.g. 
translation to program-derived combinators) are equally applicable to all functional languages. 
The complexity to derive information on sharing of expressions and strictness of functions is 
the same for all functional languages.

Some  functional  languages  (e.g.  SASL  [TUR79])  allow  less  restricted  types  than  other 
languages (e.g. Miranda [TUR85]). In the implementation this may lead to run-time checks on 
the type of expressions. These checks can be omitted in strongly typed languages resulting in 
higher reduction speed. For the present discussion of parallel reduction architectures we ignore 
this aspect and consequently differences in functional languages do not need to be considered.

3.2 Lower levels of the framework

The reference framework that will be established consists of a set of architectural properties. 
These  properties  represent  essential  aspects  of  the  implementation  of  parallel  reduction, 
corresponding to all layers of the hardware and software architecture model. The higher level 
properties in the framework are more reduction specific, whereas the lower level properties are 
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related to parallel architectures in general. Therefore we split the presentation of the framework 
and the comparison in two parts.

The first part is described in this section and covers the architectural properties of the abstract 
machine layer (software model) and the corresponding PMS-layer (hardware model). Relevant 
properties of lower layers are also included in the first part.

The second part  that  will be presented  in the next  section covers  the higher layers of the 
software model.

The discussion of the abstract machine layer in literature on parallel reduction machines is often 
rather superficial. The abstract machine is frequently presented by a model that describes the 
interaction between processes and storage (a process-storage model [WAT87]). Such a model 
gives a global impression of the abstract instructions concerning process management, memory 
management and communication. For a number of parallel reduction machines some abstract 
machine models and their corresponding PMS-layer descriptions will be reviewed in the next 
subsections.

3.2.1 Alice, Flagship and Rediflow

An abstract machine model that is used in several parallel reduction machine designs (Alice, 
Flagship, Rediflow) is shown in figure 2.
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M 

Figure 2: The abstract machine model of the Flagship- and Rediflow architecture.

In this model a number of processes (P) can access concurrently one shared storage space (M). 
Processes may be dynamicly created and deleted and communication may occur between each 
pair of processes. The abstract  machine model of figure 2 is similar to  the abstract  machine 
model found in conventional sequential architectures.  It  does  not  reflect  the  differences in 
communication- and memory bandwidth that may exist in the hardware.

The  architecture  of  figure  2  may  be  implemented  by  different  PMS-descriptions  of  the 
hardware. Three configurations are shown in figures 3a, 3b and figure 4.
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Figure 3a: The PMS-description of a cache-based Figure 3b: The PMS-description of
shared memory architecture. the Flagship architecture

In figure 3a each processor (P) has direct access to a cache memory (CM) and shared access 
(via the cache) to a partitioned global memory (M). The communication switch (S) may serve 
several memory accesses simultaneously. In this way partitioning of the shared memory can be 
exploited. In addition the caches will avoid many accesses through the switch, if computations 
exhibit locality.

The architecture of figure 3a is currently used in several experimental parallel machines [PFI85, 
NGU88,  WIL88].  The  implementation of  reduction  on  such an architecture  is particularly 
interesting because the property of referential transparency may reduce the cost of maintaining 
cache coherency. For instance, when expressions are cached that are in normal form, they will 
never be updated. On the other hand, if a redex happens to  be copied in several caches, all 
those copies will eventually reduce to the same value. When, after reduction of a cached redex, 
coherence between caches and main memory is not reestablished, only computation time will be 
wasted,  incorrect  answers will not  be produced.  Therefore,  (cheaper)  variants of coherence 
mechanisms may be possible that do not maintain complete coherence at any instant of time.

An architecture similar to  the one in figure 3a that is used for parallel reduction is the Alice 
machine [DAR81,  EIS87].  However,  no  hardware  supported  caches  are  provided.  Instead 
reduction processors are provided with small local memories where function definitions are 
stored in a cache-like manner.  To access and rewrite redexes, procesors always have to access 
main memory through the communication switch. In the Alice machine, processors are clusters 
of Transputers [WHI85] and the communication switch is implemented as a multi-stage delta-
network based on a specially designed ECL-chip.

A different approach is taken by the Flagship project [WAT86, WAT87]. In comparison to the 
architecture of figure 3a, one could say that the cache size is significantly increased and the 
main memory is completely discarded. However, the memories in the Flagship machine are no 
hardware caches but normal memories. Each local memory contains part of the global address 
space. These parts  may overlap and copies of the same subgraph may exist in several local 
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memories, which bears some ressemblance to caching. It is not yet specified how coherence is 
dealt with. The data communication switch will be probably implemented as a delta-network.
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Figure 4: The PMS-description  of the Rediflow architecture.

Figure 4 shows the PMS-level architecture that has been used by Keller in a simulation of the 
Rediflow machine [KEL84, KEL86]. A number of identical processing elements are configured 
into a regular 2-dimensional mesh-structure.  Each processing element consists of a memory 
connected to five processors. Four of these (C) are specially devoted to communication. They 
provide parallel DMA-transfer  capability to  the  surrounding processing elements.  The  fifth 
processor (P) is a general purpose programmable processor  used to  implement the abstract 
machine. The processing element conceived by Keller is similar to the Transputer architecture 
[WHI85].

3.2.2 ZAPP

An abstract machine model that does not support a single  addressable storage space is shown 
in figure 5. This model has been used for the implementation of parallel reduction in the ZAPP 
proposal [MCB87].
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Figure 5: The abstract machine model of the ZAPP architecture.

The total storage space is divided in several disjunct fixed spaces (M). Each sub-space can be 
accessed by a number of processes. These processes may be created dynamicly but once in 
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existence they are not allowed to migrate between memory spaces. Communication instructions 
are provided in the abstract machine to synchronize two processes and to transport data.

The ZAPP abstract machine model has been implemented on a PMS-level architecture identical 
to  the  one  illustrated  in figure  4.  The  main difference between the  models of  ZAPP and 
Rediflow is that  the former model does not try to  hide the relatively slow access to  remote 
memories, while the latter architecture does.

3.2.3 GRIP

Although on a higher level the abstract machine model of the GRIP machine [PEY87b, CLA86] 
may be described by the model of figure 2, there is a fundamental asymmetry in the design that 
justifies a lower level illustration. The philosophy behind GRIP is to increase the grain size of 
the operations on the shared memory. Instead of simple read/write actions on a word by word 
basis, the memory (M) is provided with processing capacity to perform higher level (reduction 
specific) instructions.
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Figure 6: The abstract machine model of the GRIP architecture.

This results is an abstract machine model shown in figure 6. There is a pool of processes (P), 
each of  which operates  on  one  shared  memory.  The memory is accessed via intermediate 
special purpose processes (I). These processes perform reduction specific operations. A single 
global memory address space is realized by the global communication address space between 
processes P and I.
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Figure 7: The PMS-description of the GRIP architecture.
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Figure 7 illustrates the PMS-level architecture of the GRIP machine. Processors are clustered in 
groups. Each processor is provided with a local memory. There is one shared bus-connection 
(S) between the processors in a group. The interconnection between clusters is realized by a 
second shared bus-connection (PS) and a special interface processor (C). The processors in a 
cluster  are  not  identical.  One of  them (I)  performs specialized functions supporting  graph 
reduction on a large local memory.  The other  four  processors  (P)  only have a small local 
memory and are responsible for the actual graph reduction.

The specialized processors (I) are intended to increase the functionality of memory operations 
(intelligent memories). This may reduce the amount of memory operations while increasing the 
size of the information to be transported.  Therefore it becomes possible to exploit a packet 
switch protocol on the bus PS. The local buses S are normal circuit switched (one word at a 
time) buses. It is expected that the packet switched bus achieves a high utilization factor, which 
would reduce the disadvantage of this bus as a potential bottle-neck in the architecture.

3.2.4 APERM

The  abstract  machine  model  of  APREM  (Amsterdam  Parallel  Experimental  Reduction 
Machine)  is  similar  to  the  ZAPP  model.  However,  for  efficiency  reasons  two  abstract 
communication mechanisms are introduced.
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Figure 8: The abstract machine model of the APERM architecture.

The first mechanism  allows processes to  synchronize and transport  a small amount of data 
(connection S1 in figure 8).  The second mechanism copies large graph structures from one 
storage space to another. The copy is performed without process synchronization (connection 
S2 in figure 8). Synchronized transport  involves a number of duplications of the data to  be 
communicated. Some of these duplications can be avoided when data is transferred without 
process synchronization. A more detailed account on this issue can be found in chapter 8. As 
far as we know, our architecture is the first reduction machine that features a separation of 
synchronized process communication and unsynchronized bulk-data transport.
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A second difference with the ZAPP abstract machine model is  that processes in APERM are 
static. A fixed number of processes is associated to each storage sub-space.

In contrast to the other architectures, the current design APERM features a single process (C) 
to control the distribution of reduction tasks in the machine. The principles of loadbalancing 
mechanisms are compared in the next sections on the higher level aspects of architectures. 

The  PMS-description  of  APERM is illustrated  in figure  9.  It  is  composed  of  processors 
interconnected by dual ported memories. The advantage of such connections compared to  a 
general  communication  switch  is  the  high  bandwidth.  Data  may be  transferred  from one 
memory to an adjacent memory at the full rate of one word per memory cycle. A more detailed 
account on the PMS-level design of APERM is given in section 3.5 and chapter 4.  A more 
detailed account on the APERM abstract machine model is presented in chapter 8.
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Figure 9: The PMS-description of the APERM architecture.

3.3 Higher levels of the framework

The  higher  layers  of  the  abstract  architecture  constitute  the  second  part  of  the  reference 
framework. It mainly concerns the reduction machine layer and the translation to the abstract 
machine layer. The functional language layer is not considered because the differences between 
the various functional languages in use are not of significant importance from the architectural 
point of view (see section 3.1).

The following architectural properties (a-e) constitute  the higher level part  of the reference 
framework:

a) The representation of the program in the abstract reduction machine.

Possible representations are based on graphs, trees or  strings. A tree representation can be 
considered  as  a  graph without  sharing.  A string representation  is a  tree  without  pointers. 
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Strings are stored in consecutive storage places in the abstract reduction machine. Strings have 
to be delimited with special marks to indicate the beginning and the ending.

b) The reduction mechanism.

The instruction set of the abstract reduction machine has to support one of the basic reduction 
mechanisms:  β-reduction,  fixed  combinator  reduction  or  program-derived  combinator 
reduction. The reduction machine is mapped onto the abstract machine by means of compilation 
or interpretation.

The reduction process on the level of the abstract reduction machine can be divided in three 
different activities:

1) finding reducible expressions
2) reducing these expressions
3) collecting garbage

Especially the  first  and  the  last  activity  probably consume a  considerable  amount  of  the 
computation power involved in reduction. Hartel discusses this issue in detail in his thesis on 
storage  management  in  fixed  combinator  reduction  machines  [HAR89].  In  the  present 
comparison we will only briefly indicate what kind of garbage collection is proposed for the 
considered architectures:

c) Garbage collection method

d) Parallelism in the abstract reduction machine (reduction strategy)

The  Church-Rosser  property  of  practical  reduction  systems implies that  multiple reducible 
expressions may be rewritten in parallel as long as it is guaranteed that the program terminates. 
Not  all reducible expressions in a program are needed to  compute the final answer of that 
program. The conditional function (if then else) is an example of a function that does not need 
all its  arguments  to  compute  its  answer.  A safe approach to  parallel reduction  is only to 
compute those redexes in parallel that are known to be needed for the final answer. This form 
of parallelism is called strict argument parallelism. A function is called strict in an argument if 
the argument is needed to compute the function.

The problem with strict argument parallelism is that it is not always possible to determine if an 
argument is needed in a computation. An additional problem is that only part of an argument 
may be needed. For instance one can imagine a computation that only needs all even elements 
of a given list. If such a list is computed in parallel to  the main computation then twice the 
amount of work would be done compared to what is needed (assuming that all elements of the 
list require the same amount of computation). Still it may be advantageous to evaluate a "partly 
needed" data-structure in parallel, even though part of the work is not needed. On the other 
hand it might not be worth to perform a fully needed computation in parallel if its grain-size is 
too small.
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Parallel reduction can be based on strict-argument parallelism or on other parallel strategies. An 
example of a safe parallel strategy that also reduces non-strict arguments is the Gross-Knuth 
strategy. A Gross-Knuth reduction step consists of two phases. In the first phase the set of all 
current reducible expressions is determined. During the second phase, all expressions in the set 
are  rewritten  in  a  random  order.  This  means  that  the  strategy  repeatedly  advances  all 
computations by one reduction step. The random order of the reduction steps in the second 
phase implies that as much parallelism can be used as is available. Both needed and not-needed 
computations  are  performed  and  evenly spread  over  the  available processing  power.  The 
Gross-Knuth strategy specifies fine grain  parallel computations. However, grain-size can be 
increased by a variant of the strategy. In this variant all parallel computations are advanced by a 
fixed number of reduction steps instead of one. The Gross-Knuth strategy can be compared to a 
breadth-first evaluation of goals in a (parallel) inference machine.

All practical approaches to  parallel reduction use strict  argument parallelism. Methods have 
been developed to determine strictness information during compile time [PEY87a]. Strictness 
analysis may be supplemented with heuristic information about the grain-size of combinators 
[HUD85].  In such a way the triggering of parallelism is indicated by the compiler and the 
programmer does not need to provide knowledge about parallelism in the program.

Because in practice both strictness analysis and grain-size heuristics have not yet proved to be 
very  effective,  much  better  results  can  be  obtained  if  some  indications  about  these  two 
properties are provided by the programmer.

In addition to the previous reduction specific properties (a,b and c) the following general issues 
concerning parallel architectures will also be considered in the architecture comparison:

e) Grain size

The grain-size of  a  computation  is the  ratio  of  the  amount  of  work   and  the  amount  of 
datacommunication involved in the computation. For a particular architecture these amounts 
can be translated  into  durations.  The  computation-  and communication performance of  an 
architecture together with the grain-size of computations determine if parallel evaluation may 
reduce the overall execution time compared to sequential evaluation.

f) locality

An issue closely related to grain-size is locality. Two kinds of locality may be distinguished: 
locality in time and locality in space. In relation to a single computation these concepts may be 
informally defined in the following way:

When a computation remains active for a relatively long period of time, its locality in time is 
said to be relatively high. Thus, locality in time corresponds to the amount of work involved in 
a computation. On the other hand, when a computation only uses data located in a relatively 
small area of the storage space, its locality in space is said to be relatively high. Thus, locality in 
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space is inversely proportional to the amount of datacommunication in a parallel architecture. 
The  two  types  of  locality in relation to  a  single computation  will not  be included in our 
reference framework because they are already captured by the grain-size property.

Locality in space can also be defined in relation to a group of parallel activities. A group of 
computations  has  a  high locality in space  when most  of  their  activities are  confined to  a 
relatively small area of storage space. The latter type of locality will be included as a separate 
property in the framework of our comparison for the following reason:

When a group of fine grain computations with a high locality in space is executed in the local 
memory of a single processor they may together form an activity of coarse grain size. If an 
architecture  succeeds to  establish this kind of locality,  even fine grain calculations may be 
executed efficiently on a distributed memory architecture.

The most efficient implementations of reduction use a graph representation of the program. An 
interesting question is wether a collection of rewrite actions on the graph posses some form of 
locality in space. The Flagship project is based on the assumption that such a locality in space 
can be established by the run-time system.

In  our  approach  to  parallel reduction  locality in space  is  simply enforced  by copying an 
annotated coarse-grain expression to a contiguous remote storage area. The cost of duplicating 
the expression has to be weighted against the benefits of parallel evaluation.

g) Loadbalancing

Loadbalancing is a mechanism in parallel architectures to obtain an even distribution of parallel 
activities  (load)  over  the  available  processing  power.  Loadbalancing  information  may be 
calculated  at  compile-time,  possibly with  the  aid  of  programmer  annotations.  In  contrast, 
distribution of parallel tasks may be computed at run-time. The run-time scheduling of tasks 
can be decided in one logical centre or, alternatively, the computation of scheduling may be 
implemented in a distributed fashion. The latter type of loadbalancing is often used in the form 
of diffusion scheduling, where only local criteria are used to migrate tasks.

Summarizing the following aspects may be distinguished: loadbalancing annotations, compile-
time loadbalancing, centralized run-time loadbalancing, distributed  run-time loadbalancing.

3.4 Comparison of parallel reduction machines

In the next subsections a number of parallel reduction machines will be discussed and a tabular 
overview of  this  discussion is  presented  in figure  10.  For  each  property  of  the  reference 
framework (a-g) a separate table is shown. In addition table h summarizes the properties of the 
lower levels of the framework,  referring to  the figures presented  in section 3.2.  Table  i is 
included to  give an impression of the present  state  of performance analysis in the various 
projects.
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3.4.1 Mago's FP-machine

A proposal for  an architecture  based on  string reduction  is Mago's  FP-machine [MAG79, 
MIL89].  Reduction is performed in applicative order.  Therefore  the  disadvantage of string 
reduction is alleviated somewhat, because no duplication of work will occur when strings are 
copied.  Still large data  structures  may be copied,  where sharing could have been used.  An 
advantage is that some of the copying may be performed in parallel.

The reduction mechanism is based on a fixed set of combinators, proposed as the FP-language 
by Backus [BAC78]. The language FP, as a consequence of being a combinator language, uses 
no variables. An FP program can be viewed as one combinator expression applied to a data-
structure.

In  contrast  to  the  elementary combinators  used  by Turner,  the  FP-combinators  are  quite 
complex. They are supposed to be sufficient as a programming language. From an architectural 
point of view the FP-combinators are well suited for special parallel hardware implementations. 
The rewriting actions look like vector instructions. It was part of the philosophy of the design 
of FP to  specify large computations as basic machine instructions. The Mago-machine may 
work well when large data-structures have to be processed.

The PMS architecture of the FP-machine is a collection of reduction processors (called leaf 
processors) interconnected by a tree-shape network. The leaf processors contain the expression 
string  that  has  to  be  reduced.  The  internal  nodes  of  the  tree  are  also  active  processors 
supporting simple state transition functions. For instance, the detection of reducible expressions 
takes place in the network. The top-node of a sub-tree that spans a reducible expression knows 
that it is responsible for the rewriting of the expression. This node will control all actions that 
are necessary for the rewriting. It uses the sub-tree to gather and broadcast arguments to the 
right places. The broadcasting mechanism in the tree of processors allows an expression to be 
copied to many places in one action.

Computations  in  Mago's  FP-machine  will  exhibit  much  locality.  The  string  reduction 
mechanism creates locality by copying expressions to  locally confined regions (sequences of 
leaf processors).  In  addition the  garbage  collection scheme increases  locality by squeezing 
garbage out  of strings of leaf processors.  This is accomplished by shifting the  contents  of 
processors into adjacent unused (or garbage) leaf processors.

Locality increases the performance of the Mago-machine. Reduction will speed up if a reducible 
string is confined to a short sequence of leaf processors. This is because the spanning tree of 
the string will be relatively small and few communication hops will be needed.

3.4.2 The AMPS machine

The AMPS architecture (Applicative Multi Processor Architecture) is one of the first machines 
that performs coarse-grain normal order graph reduction [KEL79]. Parallelism is triggered by 
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strict functions. However, only needed arguments with a sufficient coarse grain size will be 
evaluated in parallel. The application of a user-defined function is considered to be the right 
grain of parallelism. The disadvantage of this approach is that  the grain-size of user-defined 
functions may vary considerably.

Reduction is based on graph rewriting. Only a fixed set of primitive rewrite-rules (Flow Graph 
Lisp, FGL) is supported. User-defined rewrite rules may be composed from the FGL rules.

One of the FGL-rules is the "invoke"-function, which rewrites itself into a pre-defined FGL-
graph, representing a user-defined rule (the one that is invoked). The implementation copies the 
pre-defined graph to the place where it has been "invoked". In order to perform this copying 
efficiently, user-defined rules are packed into a contiguous block of nodes. The invoke function 
is a coarse-grain operation that avoids many memory allocation steps and pointer copying that 
would occur in a fine grain combinator machine (e.g NORMA, SKIM). One should realize that 
this idea was published at the same time that Turner published the implementation of SASL 
based on fine-grain SKI-combinators. It would still take several years before super-combinators 
were invented.

The AMPS architecture consists of a collection of FGL-processors connected to a tree-shaped 
network. The network serves two purposes: data-transport and loadbalancing. If the distance 
between parent and child processes remains small (locality is maintained), the tree topology will 
transport  data efficiently. If locality is lost,  messages have to  travel high up the tree,  and a 
communication  bottle-neck  will  arise.  The  loadbalancing  mechanism has  to  maintain  the 
locality. It has not been shown that this is actually the case.

The nodes in the tree network are simple processors. Apart from transporting data, they also 
monitor the load in their sub-trees. After adding up the load figures reported by its child-trees, 
a node presents the result to its parent node. All nodes in the tree continuously perform this 
load calculation. If a node detects  a difference in the load of its child trees that  exceeds a 
certain threshold, it initiates the transfer of reduction tasks from the most loaded sub-tree to the 
less loaded sub-trees.

The AMPS architecture supports one global address space though each FGL-processor only 
has  local  memory.  The  coarse  grain-size  of  tasks  should  compensate  the  communication 
overhead caused by the implementation of a single global address space.

The AMPS architecture contains a number of well chosen architectural features: Only coarse 
grain reduction tasks are evaluated in parallel, diffusion scheduling is used for loadbalancing, 
reduction is based on coarse grain graph-rewrite rules and finally sequential tasks are reduced in 
normal order.



58 Architectures for parallel reduction chap III

3.4.3 The Rediflow machine

The Rediflow architecture [KEL84, KEL86] has been presented as a follow-up of the AMPS 
machine. The main improvement is the merging of reduction and data-flow, which explains the 
name of the architecture. The ideas behind Rediflow can be viewed as an optimization in the 
implementation  of  reduction  by exploiting  the  behaviour  of  streams.  Programs  based  on 
communicating sequential processes do not run well on architectures exploiting coarse grain 
strict argument parallelism, like the AMPS (see chapter 7). In a functional language processes 
are  modeled as  tail-recursive functions,  consuming and producing streams.  If  this  kind of 
behaviour is recognized by the implementation of the reduction model, efficient imperative code 
can be generated for the processes. The Rediflow architecture was the first reduction machine 
proposal in which (stream-based)  functions are  compiled to  imperative code.  The issue of 
implementing communicating sequential processes on our architecture is treated in chapter 7.

An other difference with the AMPS architecture is that  it is recognized that  a physical tree 
topology is not desirable for mapping the process tree generated by strict argument parallelism. 
The Rediflow architecture proposes an XPUTER as the only processing element, incorporating 
a FGL-processor, a memory and a packet switch. Several topologies may be realized with such 
an element (N-cube shuffle exchange, grid). The ideas are similar to  the architecture of the 
Transputer [WHI85].

The  loadbalancing  algorithm has  been  adapted  to  a  non-tree  topology.  Still  a  diffusion 
scheduling  algorithm  is  used,  but  loadbalancing  information  is  exchanged  between  all 
neighbouring processors.  The algorithm computes  for each processor  a "pressure",  derived 
from the internal load and the pressures of surrounding processors.

Task migration is initiated when a significant pressure difference is detected. The production of 
parallel tasks is modulated by alternating between a FIFO- and a LIFO task evaluation. This 
idea was first proposed by Sleep in the ZAPP architecture.

3.4.4 The ZAPP architecture

The ZAPP (Zero Assignment Parallel Processor) architecture [BUR81, MCB87] is similar to 
Rediflow  with  respect  to  the  processing  elements  and  the  loadbalancing  strategy.  The 
communication  switch  between  processing  elements  is  only  required  to  have  a  "strong 
connectivity". In contrast to what is suggested in an earlier paper [BUR81], it is clearly stated 
in [MCB87] that no global address space is supported.

Parallelism is generated  by the  use of  paradigms,  which may be considered as patterns  in 
algorithms. An example is the divide-and-conquer paradigm, which is the only one currently 
used in ZAPP. This method is similar to the the approach to parallelism in our architecture. The 
similarity extends to the way in which a program is distributed over the processing elements 
and  the  way  in  which  expressions  are  copied.  The  program  is  initially broadcast  to  all 
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processing elements, and function applications contained in the divide-and-conquer paradigm 
are copied to remote processors for parallel evaluation.

The loadbalancing scheme of ZAPP uses the "single-stealing" rule. This rule allows a relatively 
empty processor to steal reduction tasks from neighbouring processors. However, a stolen task 
can not be migrated again. This guarantees that the distance between parent and child tasks is at 
most one communication link. In Rediflow tasks can migrate over an unspecified distance.

As in Rediflow the evaluation order of tasks in a processing element switches between LIFO 
(breadth first) to FIFO (depth first), depending on the load of the processor. The number of 
tasks grows linearly with the depth of the process tree during depth-first evaluation, whereas it 
grows exponentially during breadth-first evaluation.

No reduction model is yet specified in the ZAPP proposal. Consequently no decisions have 
been  made  with  respect  to  program  representation,  reduction  mechanism  and  garbage 
collection. The application programs used in the reported  experiment [MCB87] are entirely 
programmed in OCCAM (in a functional style).

3.4.5 The Alice and Flagship machines

Fine grain parallel graph reduction is proposed in the Alice architecture [DAR81, EIS87]. The 
program is represented as a graph consisting of nodes that are called packets to indicate the 
transportable nature of the nodes. A packet in the Alice machine is similar to  a node in the 
graph rewrite language CLEAN [BRU87].  It  contains a function name and pointers to  the 
arguments of the function. If a rewrite rule exists for the function and the arguments have the 
form required by this rule, the packet can be rewritten as specified by the rule. Such a packet is 
called a rewritable packet. The granularity of parallel actions in the Alice architecture is a single 
rewrite action. Rewritable packets are stored in a special pool, from which a fixed number of 
parallel tasks retrieve packets to be rewritten.

The Flagship design [WAT86, WAT87] is similar to the Alice proposal. Much attention is paid 
to  the grain-size and communication cost  of packet rewrite actions. Packet rewrite rules are 
program-derived  combinators,  translated  to  efficient  imperative  code.  Before  a  processor 
attempts rewriting a packet, separate concurrent processes take care that all direct descendants 
of the packet to be rewritten are copied to the local memory of the processor. If this copying 
can be done faster  than the rewriting, all processors can effectively reduce at  their highest 
speed.

The  reduction  order  of  both  Alice and Flagship is in principle applicative,  but  with some 
difficulty also normal order can be supported: Special packet types are introduced to support 
unevaluated  and  curried  applications.  The  Flagship  machine  will  make  use  of  strictness 
information inside rewrite rules to construct data-flow graphs and save the overhead to detect 
unevaluated packets on strict argument positions.
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Both Alice and Flagship architectures rely on a task diffusion mechanism that dynamicly moves 
reducible  sub-graphs  between  processors  in  order  to  keep  the  load  balanced.  If  such  a 
mechanism can be efficiently implemented on a local memory architecture using rather fine-
grained rewrite actions, is a question that remains to be answered.

The  Flagship  proposal  mentions  weighted  reference-counting  as  the  garbage  collection 
mechanism that  will probably be used [WAT86].  Cycles will be recovered by an additional 
mark-and-scan sweep from time to time.

3.4.6 The GRIP machine

As opposed to  all previous architectures,  the GRIP (Graph Reduction In Parallel [PEY87b, 
CLA86])  machine supports  a  global  address  space  in hardware  by using  a  single  shared 
connection between the processors in the system. The practical implementation has already 
been discussed in 3.2.4.  The GRIP machine is intended to  exploit  medium to  coarse grain 
parallelism. The architecture is claimed to  hold a position in between a tightly- and loosely 
coupled system. In the design this is reflected by the packet-switched operation of the shared 
bus connection. Operations on this bus have a coarser granularity than single word at the time 
accesses. On the other hand the granularity is smaller than complete graph rewrite actions.

The reduction mechanism is based on compiled graph-rewrite rules. A mark-and-scan garbage 
collection mechanism is used. Reduction is stopped in each processor to execute the marking 
phase. Scanning is performed concurrently with reduction.

Strict functions give rise to new reduction tasks. Information about the strictness of functions 
and applications is supposed to be present in the graph. Strictness analysis and user annotation 
are mentioned as possibilites to derive this information [CLA86]. Reduction processes "spark" 
new tasks when strictness tags are encountered during unwinding or rewinding the spine of 
function applications.

It  remains unclear if the  grain size of these tasks  is controlled.  Because only strictness is 
mentioned as a criterion to spark tasks it can be assumed that task granularity will be fine. It is 
suggested that the synchronisation of tasks is implemented as basic operations of the specialised 
memory processors (see section 3.2.3).

The amount of parallelism is managed by changing the evaluation order in the distributed task 
pool between FIFO and LIFO like in the previous architectures. An additional "resumed-first" 
strategy is mentioned which gives priority to recently unblocked tasks over new tasks that have 
not been active yet.

3.4.7 The APERM machine

The  parallel  reduction  model  that  we  use  in  our  architecture  (the  Amsterdam  Parallel 
Experimental Reduction Machine) is based on a combination of graph- and string reduction. 
Within each of the local storage spaces pure graph reduction is performed. However, when 
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subgraphs are  detected  that  represent  coarse grain computations,  they may be copied to  a 
remote  storage  space  to  benefit  from parallel evaluation.  This copying is a  kind of  string 
reduction,  but  a special reduction strategy avoids duplication of work  in these cases.  This 
reduction mechanism is a unique feature of APERM.

Locality  in  space  is  enforced  by copying subgraphs  to  a  separate  remote  storage  space. 
Reduction of the copied subgraph can be completed without reference to the original graph. In 
particular,  garbage  can  be  collected  locally without  interference  with  the  other  reduction 
processes.

In  APERM  the  transport  of  subgraphs  occurs  without  synchronization  to  the  reduction 
processes and after reservation of sufficient contiguous storage space at the destination. This 
yields definite advantages with respect to communication speed, as discussed in chapter 8. To 
implement this kind of graph transport  a copying garbage collection scheme is mandatory. 
None  of  the  other  reduction  machine  proposals  consider  unsynchronized  communication 
support  for graphs. Flagship, Alice and GRIP base their data-communication on much finer 
grain units than a subgraph. The ZAPP architecture has not yet implemented graph reduction 
and consequently specialized graph-communication has not been considered.

Parallelism in APERM is generated by annotated strict functions. The annotations are inserted 
into  the  source  text  by  the  programmer.  The  granularity  and  the  amount  of  parallel 
computations is controlled by a threshold mechanism at the source text level of the application 
program.  The  mechanism  is  incorporated  in  the  application  by  means  of  program 
transformations (see chapter 5).

The only reduction machine based on a similar approach (i.e. annotated parallelism) is ZAPP. 
However,  the grain size of computations is not restricted to  a minimum and the amount of 
parallelism is supposed to be managed by the run-time system (the FIFO/FIFO strategy).

In APERM loadbalancing is performed by a centralized process. Based on run-time acquired 
knowledge of the structure of application programs (the execution profile), this loadbalancing 
algorithm may obtain better results than the diffusion schemes employed in all other reduction 
architectures  reviewed  in  this  section.  In  addition  the  loadbalancing  algorithm achieves  a 
considerable  optimization  of  the  communication  cost  by exploiting  the  partly  overlapped 
address spaces of APERM.



62 Architectures for parallel reduction chap III

 Program  
represen-  
tation 

MAGO 

AMPS 

Rediflow 

ZAPP 

Flagship 

GRIP 

APERM 

nested  
delimited  
strings 

graph 

graph 

not  
specified 

graph 

graph 

locally  
graph &  
globally  
tree 

string reduction of  
fixed set of  
combinators 

graph rewriting of a fixed set of  
primitive functions 

Reduction  
mechanism 

graph rewriting of a fixed set of  
primitive functions, stream-based  
user-defined functions compiled to  
imperative machine code. 

not specified 

graph rewriting of user-derived  
combinators, compiled to  
imperative machine code. 

graph rewriting of user-derived  
combinators, compiled to  
imperative machine code. 

locally graph rewriting, globally a  
kind of string reduction. Graph  
rewriting of user-derived  
combinators, compiled to imperative  
machine code 

Garbage  
collection 

asynchronous shift  
operations between the  
leave-processors 

not specified 

not specified 

not specified 

reference counting.  
Cycles recovered by  
additional mark-and-scan 

mark-and-scan. Scanning is  
performed concurrently with  
reduction 

copying garbage collection.  
No synchronization of  
reduction processes required 

frame-  
work  
properties 

 

MAGO 

AMPS 

Rediflow 

ZAPP 

Flagship 

GRIP 

APERM 

Collection of  
active strings 

Tree of  
processors 

simulation ?? 

figure 2 not specified not specified 

figure 5 

figure 2 

figure 6 

figure 8 

simulation 

measurements on  
transputer hardware 
prototype being  
constructed 
prototype being  
constructed 
hybrid simulation  
on prototype 

not specified 

small to medium  
sized programs 
not specified 

not specified 

small to medium  
sized programs 

figure 2 

Tree of  
processors 
figure 3b 

figure 3b 

figure 3a 

figure 7 

figure 9 

Abstract  
machine model 

PMS  
architecture 

Performance  
evaluation method 

Application programs  
used 

frame-  
work  
properties 



chap III Architectures for parallel reduction 63

 Reduction  
Strategy: 

MAGO applicative  
order,  
innermost  
parallel 

AMPS normal order  
reduction, strict  
argument  
parallelism 

Rediflow normal order  
reduction, strict  
argument  
parallelism 

ZAPP sequential  
strategy not  
specified, strict  
argument  
parallelism of  
annotated  
functions 

GRIP normal order,  
strict argument  
parallelism 

APERM normal order,  
strict argument  
parallelism of  
annotated  
functions 

Grain size 

fine grain  
machine  
instructions 

application  
user-defined  
function.  
(fine-coarse  
grain) 

application  
user-defined  
function  
(fine-coarse  
grain) 

indicated by  
the  
programmer  
(coarse  
grain) 

packet  
rewrite  
operations.  
(fine grain) 

application  
of user-  
derived  
combinator  
(fine-coarse  
grain) 

annotated  
coarse grain  
expressions 

applicative  
order, but  
normal order is  
also possible 

Flagship 

Locality 

not exploited 

supposed to be  
maintained by  
task diffusion  
algorithm 

supposed to be  
maintained by  
task diffusion  
algorithm 

maintained by  
the "single-  
stealing" rule 

maintained by  
task diffusion  
and caching  
remote parts of  
the graph 

not specified,  
perhaps not  
exploited 

enforced by  
copying  
annotated  
coarse grain  
expressions 

Loadbalancing 

no load-balancing 

task diffusion, by a pressure  
algorithm 

task diffusion, by a pressure  
algorithm. The amount of  
parallelism is controlled by  
alternating between a LIFO-  
and FIFO task evaluation order 

task diffusion, by "single-  
stealing" rule. The amount of  
parallelism is controlled by  
alternating between a LIFO-  
and FIFO task evaluation  
order. 

not specified. The amount of  
parallelism is controlled by  
alternating between a LIFO- and  
FIFO task evaluation order. Also  
"resumed first" strategy 

central process controls loadba-  
lancing with heuristics based on  
execution profile. The amount of  
parallelism is controlled by a  
threshold mechanism 

task diffusion mechanism 

frame-  
work  
properties 

Figure 10: A comparison of several reduction machines referring to the framework of 
section 3.3.
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3.5 Dual ported modules in a bus oriented architecture

The prototype  of APERM has been constructed  from commercial available processor-  and 
memory boards. Each processor board is equipped with a reasonable amount of local memory, 
whereas off-board memory can be accessed via a bus interface. The particular boards that we 
use are equipped with two separate bus interfaces (VME and VMX), which implies that  we 
have dual ported processors (DPP) and dual ported memories (DPM). For processor boards 
the available off-board address space is divided in two  parts  where each part  will access a 
different bus. Memory boards can be accessed via both ports simultaneously. To assure mutual 
exclusion of simultaneous operations a DPM contains an asynchronous arbiter.

The  architecture  of  APERM uses  DPM's to  implement  fast  communication  links between 
adjacent processors. In chapter 4, two advantages of such an architecture are pointed out. The 
first  practical  advantage  is that  two-points  arbitration  in DPM's  is  faster  than  multi-point 
arbitration on a bus. The second advantage is that DPM's provide a shared memory between 
two processors, which offers opportunities to minimize communication cost.

In this section we show in addition to these advantages that a bus oriented architecture based 
on DPM's and DPP's can achieve a double performance compared to  a similar architecture 
using single ported modules.

In practical bus oriented architectures each processor module has a restricted amount of fast 
local memory (on-board) at its disposal. For fundamental reasons, the access time to this local 
memory is (much) shorter than the access time to the large off-board memory. When software 
is implemented on such an architecture the highest speed will be obtained when those parts of 
data and code that  are most frequently accessed, are loaded into the local memory. For an 
implementation of graph reduction optimal results are obtained when only the graph is stored 
off-board, whereas the code of the reducer and the various stacks are kept in the on-board 
memory.

Under these conditions it can be shown that a large fraction of all memory cycles will refer to 
the local memory [HAR89]. On the one hand, all instruction fetches and stack references will 
access  the  local  memory.  On  the  other  hand,  the  optimization  techniques  used  in  the 
compilation of reduction, will use local stack-evaluation in favour of graph reduction whenever 
possible.

As a consequence of this situation, the off-board memory bandwidth is under-utilized when 
only a single processor is performing graph reduction. More reduction processors can be added 
to the same bus, until either the bus or the memory is saturated. This situation is illustrated in 
figure 11a. The off-board memory space is constituted by three storage modules, while three 
reduction processors are connected to these memories by a single bus.
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To demonstrate the performance gain of a factor of two by exploiting DPM's and DPP's we 
make three  simplifying assumptions  (A1-A3).  In  the  example it  is assumed that  the  three 
reduction  processors  saturate  the  off-board  memory bandwidth (A1).  Bus  speed  and bus-
arbitration overhead are neglected. Thus off-board memory bandwidth is considered to be the 
only limiting factor (A2).
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Figure 11: Configurations with dual ported memories.

In figure 11a, the cluster of reduction processors is connected to other clusters by a network. 
The precise implementation of this network is left unspecified except for the the presence of a 
communication processor.  We assume that  this processor continuously transports  subgraphs 
between clusters at a speed that saturates the off-board memory bandwidth (A3). In our job-
based reduction model (chapter 5) such a processor is feasible (see chapter 8). Now it becomes 
clear  that  the  performance  of  graph  reduction  drops  by a  factor  of  two,  when both  the 
reduction processors and the communication processors saturate the memory bandwidth.

Figure 11b presents  a  configuration where  both  reduction and communication can operate 
simultaneously at  full speed.  The memory modules are  provided with a second port  and a 
separate bus connects them to the reduction processors. The dual ported memories of figure 
11b have the same bandwidth as the single port  memories of figure 11a (the two ports  are 
served by time-multiplexing the accesses from both sides). Consequently one memory module 
can only serve one bus at full speed. However, when reduction processors and communication 
processor access different modules, they may operate simultaneously at full speed. To make 
sure that such a situation frequently arises, the storage allocation algorithm can take care of the 
even distribution of graph nodes across the available memory modules. In the architecture of 
figure 11b the combination of interleaved memory modules and dual ported time-multiplexed 
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access  provide  a  twofold  performance  improvement  over  the  conventional architecture  of 
figure 11a.

Still another  improvement can be achieved if the communication processor of figure 11b is 
replaced by reduction processors as shown in figure 11c. These processors can be programmed 
to perform both reduction and sub-graph communication. When the communication need in the 
whole  system is  not  capable  to  saturate  the  off-board  memory bandwidth,  some  of  the 
communication processors may be switched to perform reduction tasks. This is not possible in 
figure 11b, and consequently a twofold performance increase with respect to  figure 11a can 
now be maintained even when communication traffic drops to zero. Under these circumstances 
the architectures of figure 11a and 11b would have the same performance.

From the symmetry of the architecture of figure 11c, one can observe that all processors may 
be used for either reduction or communication. Moreover, if we impose certain restrictions on 
the communication network, each processor is capable to perform reduction in two clusters. 
This is because in figure 11c all processors are equipped with two ports,  one into the own 
cluster  and one connected to  the network.  When the latter  connections are directly tied to 
DPM's  in  other  clusters,  each  processor  can  perform  reduction  in  two  address  spaces 
corresponding to both its ports. These restrictions turn the network into a store-and-forward 
network, which would be no disadvantage in the context of extensible architectures. The future 
architecture of APERM as discussed in chapter 4, corresponds to the structure of figure 11c. In 
the  same  chapter  the  advantages  of  this  structure  concerning  the  optimization  of 
communication are outlined.
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abstract

Design considerations  of  a  coarse  grain  parallel  architecture  for  functional  languages  are 
presented. These include extensibility, the separation of computation and control of parallelism, 
the introduction of partially shared memories, a cluster concept and a conceptually centralised 
loadbalancing mechanism. The implementation of parallel reduction is based on annotation of 
coarse  grain strict  arguments.  Speed-up  figures  for  a  number  of  application programs are 
obtained  by measurements  on  a  pilot  implementation  of  the  architecture.  The  experience 
obtained with the experimental machine suggests the use of VLSI for specialised parts of the 
implementation. The proposed design is compared with related architectures.

1. Introduction

Within the context of the Dutch Parallel Reduction Machine Project [BAR87] an experimental 
machine architecture has been developed, to  gain experience with a number of architectural 
concepts, which are well suited for the implementation of functional languages. Because of the 
lack of  side effects  in these languages,  it  is possible to  annotate  independent  coarse  grain 
subexpressions, and subsequently distribute these expressions as parallel tasks over a machine. 
We discuss the implementation of parallel reduction on our architecture, which is referred to as 
APERM, the Amsterdam Parallel Experimental Reduction Machine.

Functional languages are interesting candidates for programming parallel machine architectures. 
For example, functional programs can be converted by the technique of lambda lifting [JOH85] 
into a collection of (super)  combinators.  These (super) combinators form a sound basis for 
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parallel computation [HUD85] because they can in principle be evaluated as separate units of 
local computation, without the need to access a global environment.

An important  aim of  the  research  in parallel computing  is  the  development  of  extensible 
multiprocessor architectures. These architectures have a regular structure such that the number 
of processing elements can be increased without the need to change the already existing part of 
the  machine.  Only extensible  machines  will  be  able  to  keep  pace  with  the  progress  in 
semiconductor integration technology. For this reason it was decided that the APERM should 
have a regular structure.

One of the consequences of this decision was that locality became a vital issue in the design of 
both hard -and software components of the machine. In hardware locality constraints the design 
of the storage -and communication system. In software the granularity of processes dominates 
the development of the reduction model and the application programs. Both aspects of locality 
have been the focus of our research effort that resulted in APERM. To support this research it 
was  decided to  build a  prototype  reduction machine with commercial available processing 
components, that could provide us with sufficient measurement data concerning locality. In a 
second  phase  of  the  project  we  intend  to  optimise  the  machine by incorporating  special 
components for reduction-specific tasks.

2. Separation of reduction and parallelism

A program written in a functional language is first translated into a set of rewrite rules (e.g. 
supercombinators) and a main expression. The main expression is then repeatedly rewritten, 
according to the given rules, until no more rewriting is possible. This result is called normal 
form  and the process of rewriting is called reduction.

There are two different approaches to implement reduction on a parallel architecture. The first 
possibility is to  have one global parallel reducer.  This reducer keeps track of all rewritable 
subexpressions  (R's  in figure  1),  and  schedules  the  rewriting  of  these  expressions  on  the 
available  processors.  Consequently  this  reducer  has  to  know  about  both  parallelism and 
reduction. The second possibility (see figure 2) is to have an orchestra of sequential reducers 
directed by a separate conductor, where the reducers have no knowledge about parallelism and 
the conductor has no knowledge of reduction. Communication between conductor and reducer 
is restricted to the exchange of reducible expressions and their normal forms. We considered 
the second possibility more promising to realise an extensible architecture by the exploitation of 
locality. It  has the advantage that  the orchestra of sequential reducers forms a collection of 
local computations  of  coarse  granularity.  On the  contrary,  the  first  possibility is based on 
parallel scheduling of single rewrite actions, which might turn out to have too fine a granularity.
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Figure 1: parallel reducer Figure 2: orchestra of sequential reducers

The choice to separate the control of parallelism and reduction also appeared to be fruitful in 
another area. During the progress of the project, major improvements have been achieved in the 
way that sequential reduction is implemented. Compilation techniques have been established for 
functional languages [JOH84, FAI87], which produce very efficient sequential machine code 
and allow functional programs to  compete with and even surpass imperative languages. Our 
machine can benefit from these achievements in sequential reduction, because the research in 
reduction and parallelism is separated.

2.1 Abstract machine model

Separation of reduction and parallelism not only gives the possibility to study both problems 
independently it also leads in a natural way to a model for our reduction machine.  In this model 
the reduction tasks are performed by a pool of reducer processes, which evaluate coarse-grain 
entities representing the functional program. How these entities are generated is discussed in 
section 2.2.

The problem of controlling the granularity of parallelism is solved in our model at the level of 
the application program. By a program transformation conditional statements are inserted that 
compare  the  grain-size of  parallel tasks  with a  fixed threshold parameter.  The  application 
programmer has to provide a measure for the grain-size of parallel tasks, e.g. the size of a data-
structure. When the grain-size of parallel tasks drops below the threshold they are evaluated 
sequentially.

The distribution of parallelism is controlled by a conceptually centralised process that we call 
the conductor. It allocates pieces of work to different reducers and tries to balance the load of 
processors by monitoring the usage of storage- and process resources in the system.

2.2 Parallel reduction model

Normal order graph reduction is the basis of our reduction model. The graph representation of 
a functional program, allows common subexpressions that arise during reduction to be shared. 
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As  a  consequence  shared  subexpressions  are  only evaluated  once.  This  is  an  important 
optimisation compared  to  string reduction,  where  duplication of reducible expressions also 
means duplication of work.

The graph representation of functional programs needs a single global address space. Therefore 
most  parallel  reduction  machines  feature  a  globally  addressable  storage  space  [PEY87, 
WAT87].  When  a  global  address  space  is  implemented  on  top  of  an  architecture  with 
distributed storage,  memory can no longer  be accessed in constant  time.  The access costs 
depend  on  the  size  of  the  machine  and  can  amount  to  a  considerable  overhead.  In  the 
implementation of the reduction model on APERM we have chosen only to  support  locally 
addressable memory spaces. Therefore we have to provide an explicit way to distribute parts of 
the graph structure across the local memories.

2.2.1 Job based parallel reduction

The pieces of work controlled by the conductor are coarse grain subexpressions, that we call 
jobs. In the machine these subexpressions are represented by graphs, so at the implementation 
level a job is a subgraph . No attempt has been made yet in the project to develop heuristic 
methods to detect such jobs at compile-time, but we will consider this possibility in the future. 
At present the programmer has to  annotate  those subexpressions that  represent  a sufficient 
amount  of computation to  be treated  as a job by the conductor.  These annotations do not 
change the meaning of the program, but merely cause the reducer to  inform the conductor 
about the presence of a potential job. The conductor, on its turn makes the decision if parallel 
reduction is possible and if so, takes care that the job is transmitted.

The idea is that  jobs are completely copied to  a remote  processor  when their evaluation is 
needed. The property of graph reduction to share subexpressions can thus not be maintained on 
the job level. Within jobs pure graph reduction is performed, but when parallel evaluation is 
performed shared subexpressions are unshared by copying them to the remote processor.

Summarizing, our parallel reduction model employs a kind of string reduction on the global job 
level and graph reduction within jobs.

2.2.2 Sandwich reduction strategy

To avoid the major disadvantage of copying (duplication of work), a special reduction strategy 
has been devised on the job level [VRE88]. This strategy guarantees that a job will only contain 
one reducible expression, starting at  the top  node of the job graph. We call this reducible 
expression the primary redex of the job. When the job is transported to another processor, it is 
guaranteed that there are no other (secondary) redexes . Thus, when copying takes place, no 
work can be duplicated.

In practice the sandwich strategy has been implemented by a special function to be used by the 
programmer to annotate parallel jobs:
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sandwich G job1 job2 . . . jobn
where jobi = Fi ai1 ai2 . . . aim 

The sandwich construct  is the only means in the language to  create  jobs. An expression is 
sequentially reduced in normal order until a sandwich expression is needed. The reduction of G 
job1 job2 ...  jobn  is then suspended until the parallel evaluations of job1 job2 . . . jobn have 

been completed. However, before the jobs are dispatched for parallel evaluation, all arguments 
ai1 ai2 . . . aim of each jobi are sequentially reduced to normal form, because subexpressions 
shared between the aij may contain redexes. After normalisation of the aij only normal forms 
are shared. Now copying the normal forms of the aij, in order to ship the jobs, cannot result in 
extra work1. Similarly we require that the Fi do not contain reducible expressions.

The strategy has been called "sandwich strategy" because it contains one level of applicative 
evaluation between two levels of normal order evaluation. We have embedded the sandwich 
function in SASL [HAR88]. 

Care should be taken to  avoid non-termination of the program when sandwich functions are 
inserted.  The  programmer  has  to  ensure  that  all  arguments  aij represent  terminating 

computations. The sandwich strategy cannot directly exploit "pipe-line" parallelism, where a 
chain of processes transform a list of input values while each process only operates on one 
element of the list at a time. However, it is possible to  transform a large class of programs 
based on pipe-line parallelism into versions that can be annotated with the sandwich function. 
We have called this transformation communication lifting [VRE89]. The tidal model discussed 
in section 4.1 is an example of a program that was originally expressed as a set of processes 
interconnected by streams (lists with pipe-line behaviour) and that  has been transformed by 
communication lifting into a version that runs efficiently on our job-based reduction model.

2.3 Control of Parallelism

Jobs generated by sandwich annotations exhibit a strict hierarchical structure. A job executing a 
sandwich application becomes a parent task that spawns a number of independent child tasks. 
There will be no communication between the child tasks, because jobs are self contained. The 
only communication  that  takes  place is the  transfer  of  the  child tasks  to  possibly remote 
reducers, and the returning of the results to the parent.

The  hierarchical  task  structure  avoids  problems associated  with  global  garbage  collection 
[HAR88]  and  gives  rise  to  interesting  possibilities  for  loadbalancing  strategies.  We  have 
investigated a conceptually centralised algorithm (the conductor) that uses certain heuristics to 
find a  near  optimal schedule.  The heuristics of this loadbalancing strategy is based on the 

1 provided that for all jobs in a sandwich expression: jobi ≠ jobj when i ≠ j.
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assumption that there exists a dependency between the size of the arguments in a job expression 
and the amount of work represented by the job.

A second task of the conductor is to use the knowledge about the concrete architecture, in our 
case the  presence of overlapping storage  spaces  (see 3.2),  to  minimise the communication 
costs. 

3. The architecture of APERM

3.1 Locality in the memory subsystem

The choice for a regular structure in the architecture necessitates the distribution of storage 
elements  in  the  design  of  the  parallel  reduction  machine.  However,  one  does  not  have 
completely to abandon the idea of having shared memory. A processor that is reducing a job 
has to access three types of data-areas, containing respectively the reducer-code, the stacks and 
the heap. Only the heap-memory contains the reducible expressions and is as a consequence the 
only part of the storage system that will be involved in the distribution of jobs. An important 
parameter of a reduction system is the fraction time that a reducer spends in accessing the heap. 
Measurements  on  the  prototype  of  APERM  have  shown  that  this  fraction  is  only 10% 
[HAR86]. This means that a shared bus to which the heap-memory is connected will saturate 
when  about  10  processors  are  simultaneously  reducing  jobs  in  the  heap-memory.  As  a 
consequence an architecture could be based on clusters of about 10 reducers interconnected by 
a shared bus.

3.2 Communication

In a cluster based concept the inter-cluster communication is of vital importance. If no reducer 
is  active,  the  highest  possible  datacommunication  performance  between  adjacent  reducer 
clusters is of the same order as the heap memory bandwidth. This speed could be achieved by 
coupling two cluster  busses with a special processor  dedicated to  the copying of jobs (e.g. 
DMA-unit, see figure 3).

 

 
P P P MEM P P P MEM 

DMA 
  

Figure 3: Bus interconnection by DMA 

Such a processor acquires mastery over both busses and copies a block from one cluster heap 
to the other cluster heap. In practice the arbitration protocol on a multi-master bus may cause a 



chap IV A Coarse Grain Parallel Architecture for Functional Languages 79

considerable overhead. This is caused by the generality of the protocol and the fact that a multi-
point arbitration has to be made. Moreover, all processors on both busses are blocked during 
the DMA transfer.

 

P P P MEM P P P MEM 

Figure 4: Interconnection by dual ported memory

Another possibility is to equip all memory modules with two busses and fast arbitration logic, 
resulting in a  dual ported  memory.  The  overhead  of  the  arbitration  logic on  the  memory 
modules can be made sufficiently small to be neglected in comparison with the memory cycle 
time. This can be achieved because only a two points arbitration has to be made and no general 
protocol is needed. Figure 4 shows the interconnection between reducer processors that is used 
in APERM and that is based on dual ported memory modules.

An  additional  advantage  of  dual-ported  memories  is  the  possibility  to  avoid  data-
communication  altogether,  when  a  job  is  allocated  to  a  reducer  residing  on  an  adjacent 
processor.  In such cases the  destination processor  is able to  access the job at  its  original 
position. There is no need to copy the job-graph, because the sandwich strategy guarantees the 
job to be a primary redex. This means that all outside references to subgraphs in the job refer to 
data (normal forms) and reading data can be done by several parallel reducers without conflicts.

3.3 The experimental machine

One of the goals in the development of APERM was to  be able to  adapt to  the progress in 
VLSI technology. This implies that the machine design had to fulfil the criteria for extensibility, 
e.g the possibility to add processing power without generating potential bottle-necks.
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Figure 5: The basic cell

In figure 5  the current prototype of our reduction machine is illustrated. In this prototype one 
conductor  controls  the  work  of  four  reducer  processors  and  communicates  its  control 
information via dual ported  memories.  The reducer  processors  are  also connected via dual 
ported memories. These heap-memories are considerably larger than the previous ones because 
they contain the graph of the program that has to be reduced.  When coarse grain reduction 
tasks have to be transported from one reducer to another this is done via network software that 
uses the  facilities provided by the dual  ported memories. In our  first prototype a reducer 
processor  prepares a graph for transport  whereas another  processor  reads it  from the dual 
ported memory and transports it to the next memory. This implies that in our current situation 
the network requires cycles from the reducer processors.

To illustrate the extensibility of the architecture, figure 6 presents a configuration of four basic 
cells of our machine design. It consists of two separate layers. One layer contains processors 
responsible for the reduction work and the network for the exchange of coarse grain reduction 
tasks. The other layer contains the conductors and the network over which they can exchange 
loadbalancing information. In the example we have assumed a serial connection between the 
conductors, because we expect that a limited amount of information will be exchanged between 
the conductors.
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Serial connection  
(conductor network) 

Parallel bus connection 

  

Figure 6: Four basic cells

The reducers are extensible in a mesh type of structure. The conductors, however, can either be 
extended horizontally or hierarchically, dependent on the flow of information between them. 

3.4 Possibilities for VLSI

In section 3.3 it was discussed that in APERM the transport of reducible coarse grain tasks  is 
done via a communication network that uses dual ported memories. The implementation of the 
current solution of the network layer requires cycles from the processors that also execute the 
reduction tasks. 

This could be avoided if a separate DMA type of processor would be used to  do the actual 
transport. Such a graph transport module could do much more than a simple DMA transfer. It 
could also perform the algorithm that assembles job graphs into network messages [HAR88]. 
Before  transportation  the  algorithm has  to  run  through all the  pieces  of  a  graph that  are 
scattered over the whole memory and map them into a block of consecutive memory addresses. 
As this work is also a prerequisite for the garbage collection algorithm that has to operate on 
the heap memories the graph transport and garbage collection algorithms can be combined to 
execute  in  the  same  processor.  A  combined  graph  compaction-  and  garbage  collection 
processor is our first candidate for VLSI implementation. 

4. Performance Measurements

To obtain an impression of the possible performance gain of the job-based reduction model, we 
have made a partial implementation of the model on our machine architecture. In this partial 
implementation only one reducer process is active on each processor  and communication is 
only allowed between adjacent processors. With such an experimental set-up transport costs of 
job graphs can be measured on a point to point basis. The measurements comprise the number 
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of graph-nodes that  have been transported for each job and result, the number of reduction 
steps performed by each job and the actual transmission times of jobs and results. The data 
obtained are used as parameters in an off-line performance evaluation model of APERM. In this 
model it  is possible to  experiment with several loadbalancing strategies and communication 
optimisations.

In our method to evaluate the performance functional programs on a parallel architecture, we 
use  a  mixture  of  real  measurements  (communication  time,  reduction  steps)  and  modeled 
calculations  (loadbalancing,  mapping  of  reduction  steps  to  run-time).  We  think  that  this 
method, which we call hybrid simulation, produces accurate performance predictions without 
incurring the  high cost  of  a  full implementation.  Only those  parts  of  the  architecture  are 
implemented whose simulation would otherwise require an excessive amount of computation 
time and thus would prohibit a realistic evaluation based on large application programs.

4.1 Results on possible speed-up

A number of application programs has been written in SASL [TUR79], ranging from the fast 
Fourier  transform to  a  tidal  model  of  the  North  Sea  [VRE87].  Some of  the  information 
resulting from a run of an application program on the experimental set-up can be presented as a 
job  graph.  In  figure  9  such  a  graph  is  shown  for  the  Wang-algorithm [WAN81],  which 
eliminates a tri-diagonal set of linear equations. The program contains a cascaded sandwich 
construct, spawning twice a set of five jobs. In figure 9 the horizontal axis represents execution 
time, expressed in reduction steps. The horizontal solid lines represent the time that a processor 
is active reducing a job (bold numbers), whereas the horizontal dotted lines indicate the idle 
time of a  processor.  Vertical lines represent  the  number of nodes  that  are  involved in the 
transfer of jobs or results (italic numbers).
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Figure 9: execution profile of the Wang-algorithm on a five processor system
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If the architecture provides five or more processors, the job-graph corresponds to  an actual 
execution profile. Otherwise the conductor algorithm has to schedule the jobs on the available 
processors.

A program that  evaluates  several  variants  of  the  central  loadbalancing algorithm is  being 
developed [HOF88]. This analysis program uses the measured point-to-point communication 
performance and minimises transport cost by exploiting the partly overlapping address spaces 
of APERM (see next section). Preliminary results indicate that on the fly scheduling heuristics 
approaches the best possible schedules very closely (within 10%) for all our application runs. 
However, this centralised heuristic loadbalancing algorithm, only performs slightly better than a 
simple diffusion scheme.

In section 2.1 we explained that a grain size measure for parallel jobs has to be provided by the 
application programmer.  This grain size measure is compared against  a  threshold value to 
decide if a job is still worth being reduced on a remote processor. All our original application 
programs had to be transformed to provide this grain size measure [VRE88]. 

Figure 10 shows an example of speed-up figures obtained for a program that calculates the fast 
Fourier transform of a list of complex numbers. The results are based on optimum schedules, 
found by exhaustive search through all possibilities with a branch-and-bound algorithm. The 
calculation  of  the  schedules  uses  data  measured  on  the  experimental  machine,  like  the 
communication costs for transmitting jobs and results.  Garbage collection overhead has not 
been accounted for (in fact no garbage collection was needed to run a 512-point fast Fourier 
transform on the experimental machine). In the vertical direction speed-up is plotted against a 
range of threshold values on the horizontal axis (see figure 10). Each threshold value represents 
the minimum grain size for parallel jobs in a particular run of the application program. In this 
example the length of the data list to be transformed is taken as measure for the grain size of 
jobs. Consequently the threshold value is the minimum length of the data-list required for a job 
to be executed in parallel.

All speed-up values are calculated with respect to the untransformed sequential version of the 
program. The fast Fourier transform has been applied to a list of 512 complex numbers. Several 
speed-up curves have been drawn, each for a different number of available processors.

Going from left to right in figure 10, the number of jobs increases because of a decreasing grain 
size. As long as processors are under-utilised speed-up improves. However, when too  many 
jobs are generated, speed-up deteriorates because of communication costs. From the figures an 
optimum threshold value can be determined for each number of processors.  For instance in 
figure 10 the optimum threshold value for a 4 processor system (np=4) is 128. The speed-up of 
the 512-point Fourier transform is slightly more than 3 in this case.
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Similar illustrations  (figures 11  and 12)  are  shown for  the  quick-sort  algorithm and for  a 
parallel version of  the  branch-and-bound algorithm that  we used to  calculate  the  optimum 
schedules. The threshold value for quick-sort is again the length of the list, but the schedule 
program uses the depth of the search tree to control the grain size. The input of quicksort is a 
list of 1024 values obtained by applying the sine function to  the numbers 1 to  1024.  The 
schedule program is given a list containing the execution profile of seven hypothetical jobs.

Figure 13 shows the execution profile of the tidal model of the North Sea on a two processor 
system.  Due  to  the  small communication  overhead  of  this  program a  speed-up  of  1.7  is 
obtained. When the size of the grid in the simulation is n, the amount of computation in the 
parallel jobs grows with O(n2), whereas the communication cost only grows with O(n).
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Figure 13: execution profile of the tidal model on a two processor system

4.2 Results on optimising communication

An important aspect of the centralised loadbalancing algorithm is that it tries to minimise the 
amount of datacommunication. The concrete architecture of APERM (see chapter 4) offers the 
opportunity  to  exploit  the  presence  of  dual  ported  heap  memories  between  the  reducer 
processors.  The dual ported  memories offer a shared memory space between each pair of 
reducer processors. Preliminary simulation results show that about one third of all jobs that 
have to be evaluated by a remote reducer need not be copied, because the remote reducer runs 
in a neighbouring processor and is thus able to access the shared heap space by second port of 
the memory [HOF88].
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For a two processor system the savings are 100%, because both processors are connected to 
one dual ported memory, and communication is never needed. When the number of processors 
increases,  the  economies due  to  the  dual ported  memories become less important.  This is 
intuitively clear,  because more communication is needed to  spread all jobs evenly over  the 
available processors. However, on a sixteen processor system (figure 6), still 33% of the jobs 
that have to be reduced by a remote processor can avoid communication. We think that these 
savings together with the large communication bandwidth offered by dual ported memories, 
justifies the particular architecture of APERM.

5. Comparison  and discussion of results

The architecture of APERM differs from a number of related proposals and projects:

- Data communication is based on the use of dual ported memories. Two high-speed parallel 
busses  on  the  memory modules  realise the  highest  possible datacommunication  bandwidth 
between  neighbouring  processors.  To  our  knowledge,  the  only  proposal  that  has  some 
similarity  to  ours  is  the  Bath  concurrent  Lisp  machine  [MAR83],  where  processors  are 
interconnected by dual ported memories. These memories, however, do not contain the heap 
storage but merely serve as communication buffers.

Experience shows that in real systems datacommunication represents a major bottle-neck. Most 
recent  and  current  proposals  do  not  pay  enough  attention  to  the  implementation  of 
datacommunication. This is due to the fact that often architectures are simulated. If reasonably 
sized  application  programmes  have  to  be  executed  on  a  machine,  the  simulation  of 
datacommunication behaviour appears to be practically impossible, because of the amount of 
computation involved.  Therefore,  we have developed the method of hybrid simulation (see 
section 4), which allows us to obtain realistic results based on large application programs. 

- The architecture is based on partly overlapping local address spaces provided by the dual 
ported memories. Both the use of shared busses and dual ported memories enable important 
optimisations  in the  transportation  of  jobs.  When a  reducer  dispatches  a  job  for  parallel 
execution to one of the neighbouring processors, no data communication is needed when the 
job resides in the overlapping address space. We have shown that in this way a considerable 
reduction in communication costs can be obtained by the conductor.

- APERM does not support a global address space. This implies that if a job lies outside the 
local address space of the reducer to which it has been allocated, it has to be copied to  this 
local address space. In case an expression in the functional program is shared by a number of 
jobs, the copying of this expression can be done without the duplication of work. This requires 
a special reduction strategy. Many proposals that are based on a local memory architecture still 
do support  a global address space [WAT87, HUD85, KEL84,86]. In our opinion this might 
introduce overhead that is difficult to control.
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- The loadbalancing decisions are made by a logically centralised conductor.  The conductor 
possesses global knowledge of the resource usage in the system and of the grain size of jobs. 
The loadbalancing algorithm will take advantage of this knowledge to achieve a near optimal 
distribution of jobs. According to  our knowledge all of the recent and current proposals for 
parallel  reduction  machines  use  some  form  of  diffusion  scheduling  [BUR81,  MCB87, 
KEL84,86]. Preliminary results indicate that our loadbalancing method performs slightly better 
than diffusion scheduling. Wether this advantage remains for a distributed implementation of 
the conductor will be a subject for future research.

6. Acknowledgement

We gratefully acknowledge the cooperation with the team members of the PRM project,  in 
particular P.H. Hartel and R.F.H. Hofman.

7. References
[BAR87] H.P.  Barendregt,  M.C.J.D.  van  Eekelen,  M.J.Plasmeijer,  P.H.  Hartel,  L.O. 

Hertzberger,  W.G.  Vree,  "The  Dutch  Parallel  Reduction  Machine  Project", 
Frontiers in Computing, Amsterdam , December 1987.

[BUR81] F.W. Burton,  M.R.  Sleep,  "Executing functional programs on a virtual tree  of 
processors", Conference on functional languages and computer architecture, New 
Hampshire, 1981, pp 187-194.

[FAI87] J.  Fairbairn,  S.  Wray,  "Tim:  a  simple,  lazy  abstract  machine  to  execute 
supercombinators",  Proceedings  of  the  Third  International  Conference  on 
Functional  Programming  Languages  and  Computer  Architecture  (FPCA  '87), 
Portland , Oregon, USA, LNCS 274, pp. 364-384, September 1987.

[HAR86] P.H.  Hartel,  W.G.  Vree,  "A  load  distribution  network  for  a  multi  processor 
reduction machine", Internal report D-6, PRM project, April 1986

[HAR88] P.H.  Hartel,W.G.  Vree,   Parallel  graph  reduction  for  divide  and  conquer 
applications - part II,Internal report D-20, PRM project, December 1987.

[HOF88] R.F.H.  Hofman,  "An  on-the-fly scheduling  algorithm for  a  parallel  reduction 
machine", Internal report D-18, PRM project, October 1988.

[HUD85] P. Hudak, "Distributed execution of functional programs using serial combinators", 
IEEE transactions on computers, Vol C-34, number 10, October 1985.

[JOH84]  T.  Johnsson,  "Efficient  Compilation  of  Lazy Evaluation",  Proc.  of  the  ACM 
Sigplan '84, Sigplan Notices, Vol. 19, No 6, June 1984.

[JOH85] T.  Johnsson, "Lambda lifting", Proc.  Aspenas workshop on implementations of 
functional languages, Sweden February 1985

[KEL84] R.M.  Keller,  F.C.H.  Lin,  "Simulated  performance  of  a  reduction  based 
multiprocessor", IEEE Computer, Vol 17, July 1984



88 A Coarse Grain Parallel Architecture for Functional Languages chap IV

[KEL86] R.M. Keller, J.W. Slater,  K.V. Likes, "Overview of Rediflow II  Development", 
Proceedings of a workshop on graph reduction, September/October 1986, Santa 
Fé, New Mexico, USA, LNCS 279, pp 203-214

[MAR83] J. Marti, J.  Fitch, "The Bath concurrent Lisp machine", Eurocal, 1983, Lecture 
notes in computer science 162, pp 78-90

[MCB87] D.L.  McBurney,  M.R.  Sleep,  "Transputer-based  experiments  with  the  ZAPP 
architecture", PARLE '87, LNCS 258, pp 242-259

[PEY87] S.L.  Peyton-Jones,  C.  Clack,  J.  Salkild, M. Hardie,  "GRIP-a high performance 
architecture for parallel graph reduction", Proceedings of the Third International 
Conference on  Functional Programming Languages  and Computer  Architecture 
(FPCA '87), Portland , Oregon, USA, LNCS 274, pp. 98-112, September 1987.

[TUR79] D.A.Turner,  "A  new  implementation  technique  for  applicative  languages", 
Software practice and experience, Vol 9, pp 31-49, 1979

[VRE87] W.G. Vree,  "The grain size of parallel computations in a functional program", 
Proc.  of  the  int.  conf.  on  parallel  processing  and  applications,  l'Aquila,  Italy 
September 1987.

[VRE88] P.H.  Hartel,  W.G.  Vree,Parallel  graph  reduction  for  divide  and  conquer 
applications - part I, Internal report D-15, PRM project, December 1987.

[VRE89] W.G. Vree,  "Parallel graph reduction for  communicating sequential processes", 
Internal report D-26, PRM project, Februari 1989.

[WAN81] H.H. Wang, "A parallel method for Tridiagonal Equations", ACM transactions on 
Mathematical Software, Vol 7, No 2, June 1981, pp 170-183

[WAT87] P.  Watson,  I.  Watson,  "Evaluating  functional  program  on  the  FLAGSHIP 
machine",  Proceedings  of  the  Third  International  Conference  on  Functional 
Programming  Languages  and  Computer  Architecture  (FPCA  '87),  Portland  , 
Oregon, USA, LNCS 274, pp. 80-97, September 1987.



Chapter V _____________________________________

PARALLEL  GRAPH  REDUCTION  FOR  DIVIDE-AND-
CONQUER APPLICATIONS
PART 1 - PROGRAM TRANSFORMATIONS1

1 PRM project  internal report  D-15, Dept.  of Comp. Sys.,  Univ. of Amsterdam, December 
1988



Parallel graph reduction for divide-and-conquer applications†

Part I - program transformations

Willem G. Vree

Pieter H. Hartel

Computer Systems Department, University of Amsterdam
Kruislaan 409, 1098 SJ Amsterdam

Abstract

A proposal is made to base parallel evaluation of functional programs on graph reduction combined

with a form of string reduction that avoids duplication of work. Pure graph reduction poses some rather

difficult problems to implement on a parallel reduction machine, but with certain restrictions, parallel

evaluation becomes feasible. The restrictions manifest themselves in the class of application programs

that may benefit from a speedup due to parallel evaluation. Two transformations are required to obtain a

suitable version of such programs for the class of architectures considered. It is conceivable that pro-

gramming tools can be developed to assist the programmer in applying the transformations, but we have

not investigated such possibilities. To demonstrate the viability of the method we present four applica-

tion programs with a complexity ranging from quick sort to a simulation of the tidal wav es in the North

sea.

Ke y words: divide-and-conquer parallel algorithms parallelgraph reduction
reduction strategy program annotation program transformation joblifting

1. Intr oduction

Several parallel architectures have been proposed to support the reduction model of computa-

tion. These are based on either string reduction1, 2, 3, 4or on graph reduction.5, 6, 7, 8, 9, 10, 11,

12 It is often claimed, that for most application programs, graph reduction is more efficient
than string reduction. This is due to the fact, that computational work may be shared; upon

completion of the work, the result may be used by all interested parties. In this part of our

† This work is supported by the Dutch Ministry of Science and Education, dienst Wetenschapsbeleid
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paper a mixed reduction model based on normal order evaluation is proposed, which shares

some of the advantages of both string and graph reduction.

1.1. Astorage hierarchy

In graph reduction, a program being executed is represented as a connected graph. Therefore,

the graph must be kept in a single storage space. Such a storage space can be implemented in a

distributed fashion. Inorder not to reduce the advantages of sharing, the more frequently non-

local accesses occur, the more efficiently they must be performed. In its full generality, this

brings about some difficult problems, in particular in the area of garbage collection.13

Our basic model of a distributed architecture is that of a communication network, with pro-

cessing elements at the nodes. Each processing element has its private store. In most imple-

mentations of such architectures, the latency of an access to a non-local store is larger by sev-

eral orders of magnitude than that of a local access. The slow access is usually implemented in

software by interprocess communication through a (serial) data-communication network. Fast

access to the local stores is based on exactly the same principles, but the implementation

details are different. The communication network is usually a fast parallel bus and the interpro-

cess communication occurs between hardware implemented processes of both the memory and

the processor. We do not want to dwell on these details but only stress the large difference in

speed between local and global access. An implementation should acknowledge this fact by

introducing a distinct category of access primitives for global respectively local access.

The purpose of parallel reduction is to speed up computation with respect to sequential reduc-

tion. This is achieved by steering the evaluation process in such a way, that reducible expres-

sions appear, which are suitable for evaluation by separate processing elements. The criteria

for the selection of such redexes are manifold. For example the granularity of the redexes and

their storage requirements play a role. The elected redexes are henceforth called jobs.

In our proposal, programs are annotated via the use of a special primitive function. This pro-

vides the mechanism by which jobs are announced at run time. When invoked, the subgraph

that represents a job is isolated from the rest of the graph, and made self contained. The sub-

graph is transferred to the private store of the processing element, which is given the task of

normalising the job. Upon completion, the resulting subgraph is merged with the original

graph. The previously mentioned global access primitives are used exclusively to implement

the transfer of jobs and results. The local access primitives are used to dereference pointers in

subgraphs, create new nodes etc.

An important consequence of this evaluation strategy is that application programs must (be

made to) exhibit the right kind of locality in space. Otherwise it is inefficient to evaluate jobs

in isolation. String reduction provides this locality in a natural way. Therefore we borrow this

property by implanting it in a graph reduction system and show that the disadvantages of string

reduction can be avoided.
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Our attention is devoted mainly to the development of methods by which applications can be

made to exhibit locality in space. This has the advantage, that the choice of reduction system

can be separated from issues involved with parallelism. In our opinion it does not matter

whether a parallel grain is actually evaluated as one reduction step, or as a number of reduction

steps. It is far more important that the grain size, the communication cost and the parallel over-

head are well balanced. Since the proposed method is not dependent on any particular reduc-

tion system, we also benefit from the more practical advantage that our attention is not side-

tracked by new dev elopments in the area of fast sequential reduction methods. Since our

project was started, three such discoveries were published.14, 15, 16

1.2. Applications

Given a particular application, two different methods can be applied to obtain an optimum in

the trade-off between the amount of parallelism and the grain size of parallel computations:

Data partitioning

This technique applies when the grain size of an application is too large and can be

reduced to produce more and finer grains.Divide-and-conquer algorithms use this tech-

nique and are the subject of study in the remainder of this paper. Data partitioning can be

summarised as:

F (union (a, b))→ union ((F a)in parallel with (F b))

Data grouping

The grouping technique may be applied when the grain size is too small, but an abundant

amount of parallelism is available. Several small grains may be combined into one larger

grain, as is shown in the following example:

ParMap F (1..10)→ SeqMap F (1..5)in parallel with SeqMap F (6..10)

Although the example strongly resembles the divide-and-conquer strategy, the mecha-

nism is different. The functionParMap is a parallel version of the sequentialmap(apply

to all) function,SeqMap. In the example ParMap distributes each function application

(F i), for i ∈ 1. . 10to a different processor, whereasSeqMapperforms five applications

of F in one “grain”.

Not all applications may benefit from parallel evaluation on our system.In particular, if the

efficiency of a program is based on sharing, which is the case with for instance the Hamming

problem,17 then we accept that it cannot benefit from parallel evaluation.

In the remainder of the paper we will concentrate on the mechanisms and policies involved in

creating and performing “jobs”.
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2. Job creation

A multiprocessor architecture without a global store limits the amount of parallelism in a func-

tional program that can be usefully exploited, because the communication cost to transport an

expression from one local store to another will often dwarf the gain that is obtained by the par-

allel reduction of that expression. For this reason we have decided only to allow parallel reduc-

tion of certain expressions that comply with the notion of a job. We assume, that initially a sin-

gle expression is presented for evaluation. There must be a significant amount of work

involved in this main expression. A job is defined as a reducible expression with the following

properties (the so called job conditions):

1. A job is a closed subexpression (i.e. it contains no free variables).

2. It’s normal form is needed† in the main expression.

3. For all concurrent jobs, the communication cost to transport a job must be less than the

sum of the reduction costs of the other jobs.

Only subexpressions that are jobs can be submitted to another processor in order to be reduced

(in parallel to the main expression and other jobs) by a separate reducer process. It is the

responsibility of the programmer to ensure that all job conditions are met. Otherwise parallel

evaluation may even cause performance degradation.

The restriction of parallel reduction to jobs bears the following advantages:

• Data communication can be based on jobs (and their results) as the smallest quantity of

data to be transported. Communication overhead is small compared to communication

cost, since in our proposal not just a single packet is transported,7, 12but a complete sub-

graph.

• Since a job is a closed subexpression, it can be reduced in a separate address space. As a

consequence no global garbage collection is needed.

• The process reducing a job is not disturbed by other reducing processes trying to access

parts of the job, because all other processes also reduce closed expressions. A reducer

only communicates if it needs the result (normal form) of a job submitted by the reducer

itself.

• The parallel reduction of a set of jobs starting at the same time is faster than the sequen-

tial reduction of these jobs, provided that sufficient processors are available. The problem

of achieving a near optimal distribution of jobs over the available processors during run

time has to be solved by an additional load balancing mechanism.The calculation of

optimal schedules is pursued in part II of this paper.

† A subexpressionM is needed in a context C[M ] if and only if M is reduced to normal form whenC[M ] is
reduced to normal form.
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To prove the last point we need to formalise job condition (3). Suppose there aren jobs with

communication costci and reduction costsi , i ∈1 .. n, whereci and si are measured in the

same time unit. Job condition (3) then becomes:

(1)
i ∈1..n

∀ 

ci <

n

k=1, k≠i
Σ sk




What we want to prove is that the longest job (communication included) takes less time than

all jobs in sequence (without communication), i.e.:

(2)
n

k=1
Σ sk >

n

k=1
max (sk + ck)

From (1) it follows that:
i ∈1..n

∀ 

ci + si <

n

k=1
Σ sk




and therefore (2).

The intuitive version of job condition (3), namely
i ∈1..n

∀ ci < si is not sufficient to proof (2).

Counter example: two jobs withc1 < s1 , c2 < s2 andc1 > s2.

2.1. Sharing

To illustrate the consequences of the job concept for parallel graph reduction we will consider

the graphical representation of expressions and rephrase job condition (1):

1. Therepresentation of a job is a subgraph (i.e. there are no references to nodes external to

the job).

This condition does not allow for two (or more) jobs to share a subgraph. In the illustration of

figure (1) graphsA andB share the subgraphC. Therefore, graphA does not qualify as a job

because it contains an external pointer toC.

@ A @ B

@ S

@ C

Figure 1 : An external pointer

There are several reasons not to extend the definition of a job to support these external point-

ers:

• Before submitting a job (B) all sharing nodes (such asS) hav e to be discovered and

flagged. This is necessary because otherwise the process trying to reduce a sharing node

( S) would not know where to find the result (C). The discovery of sharing nodes is a

time consuming process because the whole graph has to be traversed and marked.
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• The amount of work to reduce a shared expression might be small.

• After the reduction of jobB it is not certain that the expressionC has also been reduced.

This is the case for example ifC is not needed in expression B (e.g.

B = if “ true” then. . . elseC). So A might have waited for a result and still have to do

the work.

Considering these difficulties we have decided not to support sharing between jobs and to keep

jobs completely self contained. This implies that sharing may only occur within a job. In the

example of figure (1) it means that before sending away job B the subexpressionC is copied,

and both jobsA andB will reduceC.

2.2. Duplicationof work

The performance gain attained by parallel reduction might well be cancelled by the duplication

of work inherent to ordinary string reduction, as is shown in the illustration of figure (2).

A BD E

C

F

Figure 2 : Nested sharing

The jobC is reduced twice, once as part of jobA and once as part of jobB. Howev er, since D

andE are contained inC and shareF , F is computed twice forC and thus four times forA.

The solution is to reduceF first, supply its normal form toD andE and then reduceC etc. A

special parallel reduction strategy has been designed (the “sandwich”-strategy) that avoids

duplication of work. It is demonstrated with practical examples that divide-and-conquer algo-

rithms can be converted into sandwich programs.

2.3. Thesandwich strategy

In a system that exploits strict operator parallelism, a simple job administration is all that is

necessary. For example, if some reduction sequence encounters the redex (TRIPLUS xy z),

the addition can not be performed until all arguments have been normalised (in parallel).

Hence there is no need for the job corresponding to argument x to reactivate the addition

before jobsy andz have completed or vice versa.

In contrast to strict operator parallelism, a general parallel reduction strategy would allow for

any subexpression to be treated as a job. Although more flexible, this has the disadvantage

that the administration of jobs is more complex. Suppose, that the generation of parallelism is
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triggered by annotating subexpressions. For the application cited above there are several possi-

ble ways to annotate one or more of the three arguments. Any completely normalised argu-

ment will cause the addition to be reactivated, with the chance that no further progress can be

made because some of the arguments are still unavailable. The sandwich strategy combines the

advantages of the simple job administration required for strict operator parallelism and the

possibility to annotate arbitrary subexpressions, at the detriment of some flexibility.

A sandwich expression is defined as a needed function application (G x1 x2
. . . xn) with the

following restrictions (the sandwich conditions):

1. ThefunctionG is strict† in all argument positions.

2. Eachargumentxi of G is a function application (Hi ai1 ai2
. . . aiki

) where:

3. ThefunctionHi is strict in all its arguments.

4. Eachexpression (Hi ai1 ai2
. . . aiki

) satisfies the job conditions.

5. TheexpressionsHi anaij are in normal form.

Given a sandwich-expression, the sandwich strategy now runs as follows:

• Submit all function applications (Hi ai1 ai2
. . . aiki

) as separate jobs to be reduced in par-

allel.

• Wait for the results of all submitted jobs and continue with the normal order reduction of

G, applied to the results just received.

The sandwich strategy never duplicates work, because when jobs are submitted and copying

takes place, all terms in question are in normal form (Hi andaij ). Thus only normal forms are

copied and these, by definition, do not contain work. The strategy has been named a “sand-

wich” because it consists of one layer of parallel and applicative evaluation between two layers

of normal evaluation.

In the framework of the SASL programming language18 a new primitive function has been

introduced, which implements the sandwich strategy. The general form of a sandwich applica-

tion is:

sandwich G (H1 a11
. . . a1k1

) . . . (Hn an1
. . . ankn

)

Apart from parallel evaluation, the expression is equivalent to:

G (H1 a11
. . . a1k1

) . . . (Hn an1
. . . ankn

)

The sandwichfunction evaluates the applications (Hi ai1
. . . aiki

) in parallel. As soon as the

results of these evaluations have become available, normal lazy evaluation resumes.

† A functionG with arity n is strict in argument positioni if for every possible redex R, R is needed in
(G x1

. . . xi−1 R xi+1
. . . xn).
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Summarising, we propose to perform graph reduction within a job and string reduction with-

out duplication of work on the parallel job level. The sandwich strategy exploits strict operator

parallelism, but allows the programmer to define the operator.

3. Job control

The sandwich strategy provides the means to generate an abundant amount of parallelism,

since jobs may contain sandwich expressions, which create new jobs etc.

There are two points worth noting:

• Since we strive at obtaining best results with divide-and-conquer problems, it may be

assumed that creating more jobs implies that the individual jobs become smaller (in terms

of computational work), up to a point where job condition (3) no longer applies.

• For large problems, an uncontrolled expansion of the population of jobs will outgrow

ev en the most powerful architecture.

Some form of “job control” is necessary to prevent the system from being flooded with small

jobs. A good control mechanism would not unduly restrain parallelism, because idle process-

ing elements are a waste of resources. In general the control mechanism must be adaptive to

the load of the system.

In the architecture proposed here, there is no need for an application independent control

mechanism, since all divide-and-conquer algorithms provide a “handle” for regulating the gen-

eration of jobs. It is sufficient to make the parallel divide phase conditional to the grain size of

the potential jobs. A consequence of the relation between the amount of work involved in the

individual jobs and their number is, that a mechanism aimed at keeping the grain size large

enough will automatically restrain the number of jobs. A threshold on the grain size is neces-

sary and sufficient.

In the next sections examples are given of how the grain size of jobs in divide-and-conquer

problems can be calculated and controlled at source level via program transformation. In most

other proposals, this control is exerted at a lower level,10, 19, 20which makes it harder to

devise good heuristics.

4. Application of the sandwich strategy

As a first example of transforming a divide-and-conquer algorithm into a version suitable for

parallel evaluation we consider the quick sort algorithm. The principle of our transformation

also applies to other divide-and-conquer algorithms, as will be shown by a parallel version of

the fast Fourier transform, Wang’s algorithm for solving a sparse system of linear equations

and a hydraulical simulation program.
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4.1. Quicksort

Figure (3) shows the quick sort algorithm in SASL.21 Before proceeding we will briefly intro-

duce the aspects of the SASL programming language that we need here. A function definition

in SASL may consist of several equations. For instance in figure (3) there is one definition of

QuickSort, with two alternatives selected by pattern matching on the actual argument. If the

list to be sorted is empty, which is written as ( ), the empty list is produced as the answer. In

the second equation, the formal argument toQuickSort specifies a pattern (a: x), which is

matched with the actual argument whenQuickSortis applied to a non-empty list. During the

pattern match the head and the tail of the actual argument are made accessible asa and x

respectively. In the WHERE definition something similar happens. The result of the applica-

tion Split a x ( )  ( ) must be a list, the head of which is made accessible asm and the tail asn.

When applied to a non-empty list,QuickSortselects the heada of the list and supplies this ele-

ment as the pivot to the functionSplit. The tail x of the input list is split around the pivot in

two sublists m and n. These sublists are subsequently supplied to recursive inv ocations of

QuickSort. The symbol (++) denotes the infix operator that appends the right list argument to

the left one. When (:) is used as an operator in an expression it prepends a new head to a list.

In the Split function a conditional is used to collect the list elements with a value lower than

the pivot in the accumulating argumentm. The remaining list elements are collected in the sec-

ond accumulating argumentn. The arrow (→) connecting a condition and a clause should be

read asthen. The else clause of the conditional isSplit a y m (b: n).

QuickSort( ) = ( )
QuickSort(a: x) = (QuickSort m) + + (a: (QuickSort n))

WHERE
m: n = Split a x ( )  ( )

Split a ( ) m n = m: n
Split a (b: y) m n = b < a → Split a y (b: m) n

Split a y m (b: n)

Figure 3 : Sequential quick sort application

To obtain a parallel version of a program, subexpressions that can be evaluated in parallel must

be annotated. To achieve this we use angular brackets (‹ and › ), which obey the same syn-

tactic rules as the normal parentheses. An expression between matching angular brackets is a

job. Figure (4) shows the version of theQuickSortfunction after annotation with job brackets.

The annotation has to be provided by the programmer.
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QuickSort( ) = ( )
QuickSort(a: x) = ‹ QuickSort m› + + (a: ‹ QuickSort n› )

WHERE
m: n = Split a x ( )  ( )

Figure 4 : Quick sort annotated by the programmer with job brackets

A program annotated with job brackets can be transformed more or less automatically into a

version with sandwich expressions. A formal description of the transformation may be found

in chapter 6. In the remainder of this chapter we will introduce the principles of the transfor-

mation by means of a series of examples.

The transformation requires two steps. The first step, which we call job lifting, recognises

expressions between job brackets. Job lifting generates an auxiliary functionG that satisfies

the sandwich conditions. In figure (5) job lifting has replaced the body ofQuickSortby a sand-

wich expression ofG.

QuickSort( ) = ( )
QuickSort(a : x) = sandwich′ G (QuickSort m) (QuickSort n)

WHERE
G P Q = P + + (a : Q)
m : n = Split a x ( )  ( )

Figure 5 : The job lifted version of quick sort

If both applications ofQuickSort in figure (5) were to be reduced in parallel, the application

( Split a x ( )  ( )) would be copied and reduced twice. To solve this problem, we introduce a

variant sandwich′ of the sandwichprimitive, which normalises all theaij (in casum and n)

before jobs are created. This has the effect of normalising the application (Split a x ( )  ( ))

before the creation of the jobs.

For the sandwich strategy to be effective, both recursive applications ofQuickSortin figure (5)

should contain enough work to outweigh their communication cost (job condition 3). This may

be achieved by imposing a lower limit on the length of the listsm andn. Figure (6) shows the

final version of theQuickSortprogram, with controlled application of the sandwich strategy as

obtained by a second transformation step. We call this step the grain size transformation. The

length of the list to be sorted is taken as a measure of the grain size, since the amount of work

is O (length2 log length).

The normalisation forced by the variantsandwich′ is no longer necessary. The reason is, that

to determine the lengths of the sublistsm andn, both will have to be normalised. The compar-

isons to theThresholdtherefore serve a dual purpose: controlling the grain size and forcing

normalisation. Although the final version of the quick sort program has a complex appearance,

it should be noted that most of the code is generated by two program transformation steps.
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Threshold= 100

QuickSort( ) = ( )
QuickSort(a : x) = length m> Threshold→

length n> Threshold→
sandwich G(QuickSort m) (QuickSort n)

QuickSort m+ + (a : QuickSortseq n)
length n> Threshold→ QuickSortseq m + + (a : QuickSort n)
QuickSortseq m + + (a : QuickSortseq n)
WHERE
G P Q = P + + (a : Q)
m : n = Split a x ( )  ( )

.......................................................................................................................................................

QuickSortseq ( ) = ( )
QuickSortseq (a : x) = QuickSortseq m + + (a : QuickSortseq n)

WHERE
m: n = Split a x ( )  ( )

Split a ( ) m n = m: n
Split a (b : y) m n = b < a → Split a y (b : m) n

Split a y m (b : n)

Figure 6 : Final parallel version of the quick sort program.

The cost involved in the control mechanism that is introduced by the grain size transformation

has to be weighed against the benefits from parallel evaluation. The optimal value of the

Thresholddepends on properties of the system configuration. Both issues are pursued in part

II of this paper.22

4.2. Thefast Fourier transform

The fast Fourier transform processor is an early example of parallel computer architecture.

Though several different organisations have been proposed for these special purpose proces-

sors,23 none of them exploited the divide-and-conquer strategy to obtain parallelism, because

the divide-and-conquer strategy requires many processors executing the same algorithm and

processors used to be an expensive resource.

Unlike the quick sort algorithm the fast Fourier transform perfectly divides the data into two

equal parts at each recursive inv ocation. This should allow for an optimal processor utilisation.

Using a free mixture of conventional mathematical notation and SASL syntax, the essential

part of the program with the job annotation is shown in figure (7).
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fft 1 r
→
d =

→
d

fft n r
→
d = ‹ fft halfn halfr →u › + + ‹ fft halfn (halfr + 128) →v ›

WHERE
halfn = n / 2
halfr = r / 2
→u = →x + →z
→v = →x − →z
→x , →y = split

→
d halfn

→z = →y * exp (halfr * i * π / 128)

Figure 7 : The annotated 512-point fast Fourier transform program

To simplify the presentation, the length of the data-list to be transformed has been fixed to 512

elements, which explains the origin of the constant 128 in the program. Furthermore the result

list produced by this program is not in the right order and has to be passed through a reorder

function, which is, again for the sake of simplicity, not shown. For a fixed length fast Fourier

transform, like the one in figure (7), the reorder function can be replaced by a fixed mapping.

The function application (split
→
d n) produces a pair of lists of which the first one contains the

first n elements of
→
d and the second one contains the rest of

→
d (againn elements). The func-

tion application (fft 512 0
→
d) performs a 512-point fast Fourier transform on the list

→
d that

contains 512 complex numbers. All arithmetic on the vector variables is assumed to be com-

plex. A vector of complex numbers is represented by a list of pairs, where each pair contains a

real and an imaginary part.

Since thefft function already requires the length of the list of data as a parameter this informa-

tion is readily available for the purpose of controlling the grain size. The transformation from

the version of the program shown in figure (7) to the final sandwich version with threshold

control can be performed according to the guidelines of chapter 6.

4.3. Wang’s algorithm for solving a sparse system of linear equations

Many mathematical models of physical reality consist of a set of partial differential equations.

An important step in approximating the solution of such a set of equations is to solve a  large

set of linear equations.The corresponding matrices often appear to be in a tri-diagonal or

block tri-diagonal form. Wang has proposed a partitioning algorithm to achieve parallelism in

the elimination process of a tri-diagonal system.24 According to Michielse and van der Vorst25

a slightly modified algorithm is well suited for local memory parallel architectures. The basic

idea of the algorithm is to divide a tri-diagonal matrix in equally sized blocks and to try elimi-

nation of these blocks in parallel. The two edge blocks (top left and bottom right) are extended

by a zero column, to obtain the same size as the other blocks. Figure (8) shows how a 12× 12

matrix can be split into three blocks.
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0

0
u u 0 0 0
u u u 0 0
0 u u u 0
0 0 u u u

u u u 0 0 0
0 u u u 0 0
0 0 u u u 0
0 0 0 u u u

u u u 0 0
0 u u u 0
0 0 u u u
0 0 0 u u

Figure 8 : Partitioning of a tri-diagonal matrix (u ≠ 0)

Each block can now be eliminated in parallel. Figure (9) illustrates the effect of this part of the

algorithm on one block (i.c. the centre block of figure 8).

u u u 0 0 0
0 u u u 0 0
0 0 u u u 0
0 0 0 u u u

v v 0 0 f 0
f 0 v 0 f 0
f 0 0 v f 0
f 0 0 0 v u

Figure 9 : First elimination in one block

The elimination algorithm is designed in such a way, that the fill-in that arises (shown by the

letter f in figure 9) is confined to the first and fifth columns of the partition. The reason for

this confinement becomes apparent when two adjacent blocks that have been processed are

shown together, like blocks A andB in figure (10).
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v v 0 0 f 0
f 0 v 0 f 0
f 0 0 v f 0
f 0 0 0 v u

A:

v v 0 0 f 0
f 0 v 0 f 0
f 0 0 v f 0
f 0 0 0 v u

B:

f 0 0 0 w 0 0 0 f 0

Figure 10 : Elimination at the borders of the blocks

The rightmost column containing the fill-in of matrixA is the same column as the leftmost

column of matrixB, which also contains fill-in. When the top row of block B is used to elimi-

nate the right most value (u) at the bottom row of block A, the latter row only contains non-

zero values at the row positions where fill-in still has to be eliminated (see the result in figure

10). If the same elimination is performed on all pairs of border rows of adjacent blocks, the

resulting bottom rows of all blocks together constitute a tri-diagonal matrix. Figure (11) shows

this subsystem for the example matrix and the result of the elimination. This can be achieved

either directly with Gauss elimination or if the system is large enough by recursive application

of the partitioning algorithm.

0 w f 0 0
0 f w f 0
0 0 f w 0

0 x 0 0 0
0 0 x 0 0
0 0 0 x 0

Figure 11 : Elimination of the subsystem

After restoring the rows of the solved subsystem into their original positions as bottom rows of

each block (see the left matrix in figure 12) it can be observed, that it is possible to eliminate

all the fill-in of a block locally, only using the bottom row of the next higher block. This final

elimination step is shown in figure (12) and again all blocks can be processed in parallel.
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0 ... x 0 0 0 0
v v 0 0 f
f 0 v 0 f
f 0 0 v f
f 0 0 0 x

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Figure 12 : Final elimination

The SASL program that implements the algorithm is shown in figure (13).

Partition matrix= ParMap SecondEliminationmatrix2

WHERE
matrix2 = SequentialPart matrix1
matrix1 = ParMap FirstEliminationmatrix

ParMap f (a : ( )) = ( f a) : ( )
ParMap f (a : x) = ‹ f a › : ‹ ParMap f x ›

Figure 13 : Skeleton of Wang’s algorithm in SASL with annotation

The functionFirstElimination incorporates the first local block elimination, which is shown in

figure (9). The results of this first parallel step are gathered intomatrix1, which is subsequently

reduced sequentially tomatrix2 by the functionSequentialPart. The latter implements the

pair-wise border row elimination of figure (10) and the Gauss elimination of bottom rows from

figure (11). Finally, the second local block elimination, which is shown in figure (12), is per-

formed by the functionSecondElimination.

Parallelism is enforced by the functionParMap, which assumes its second argument to be a

list. In order forParMap to yield a correct result, thematrix should be structured as a list of

blocks: (block1 , block2 , block3 , . . . , blockn). Thislist structure does not cause a performance

penalty, because it is traversed in a linear sequence byParMap. The grain-size of the parallel

computations of this program is completely determined by the size of the blocks into which

the matrix is initially divided. In contrast to the previous examples, there is no need for

dynamic grain size control (see also figure 24).

5. An extension of the reduction model to support persistent results

The sandwich strategy imposes a restriction on the type of applications that may be alleviated

without loosing the advantages of the strategy. For instance during the first phase of the com-

putation in Wang’s algorithm, each job assigned to process a diagonal block of the matrix pro-

duces “fill in”, which must be eliminated during the third phase. The values needed for this

elimination are calculated in a second phase. The Gauss elimination in that phase only requires
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the values of the matrix elements in the bottom rows of the matrix blocks. The remaining

matrix elements are returned with the results of the first phase, only to be incorporated in new

jobs when the third phase is started. So a large part of the matrix is transported twice: once as

result of the first phase and once as part of a job in the third phase. The structure of the compu-

tations in the third phase is the same as that of the first phase, hence the matrix blocks will

probable arrive at the same reducer as before. It would have been more efficient to keep the

blocks in their respective places and connect the jobs generated during phase three to the “per-

sistent” blocks.

A mechanism is proposed, by which a subexpression of a result can be marked, with the fol-

lowing interpretation:

• The marked subexpression in a result is replaced by a “remote name” when the result is

returned to its creator. Instead of the subexpression, only the remote name is transmitted.

• After transmission of the result, the marked subexpression is saved, with its remote name,

for future use on the current reducer.

• When a remote name appears in a job, it will be allocated to the reducer that contains the

corresponding (marked) subexpression such that they may be combined to form a com-

plete job. The marking is then automatically destroyed.

A remote name is a unique identification of a subexpression. Except that it is generated and

destroyed during reduction, a remote name is similar to the names that may be given to expres-

sions in functional programs.A potential job must not contain more than one remote name,

since these may be bound to different physical locations. Outside a job a remote name has no

meaning. Furthermore, it may never be dispensed with explicitly, since this would leave an

otherwise unreachable subexpression behind, which can not be garbage collected.

5.1. Thesandwich and own functions

The primitive function own generates a remote name and causes its argument to become a

marked subexpression; otherwise it has the same semantics as the identity function. It is suffi-

cient to mark just the root of the graph that represents the subexpression. A remote name is

recognised by thesandwichfunction, if it appears as one of theHi or aij in its second argu-

ment. The restriction to certain positions has the advantage, that the implementation of the

sandwichfunction does not have to search for remote names throughout the graph that repre-

sents its second argument.

In the example shown in figure (14) theown function marks the head of the result list, which is

returned by the functionH . The latter reuses the value ofnewheadduring its next application.
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repeat oldheadoldtail 1
= oldhead: oldtail

repeat oldheadoldtail n
= repeat newheadnewtail newn

WHERE
newn= n − 1
newhead: newtail = sandwich′ G (remote oldheadoldtail newn)

remote oldheadoldtail n
= n = 1 → newhead: newtail

(own newhead) : newtail
WHERE
newhead: newtail = H oldhead oldtail

H a x = (a + 10) : (x + 7)
G (a : x) = a : (x + x)

Figure 14 : Cooperation of thesandwichandown functions

To clarify the operational semantics of theown andsandwichprimitives, a number of reduc-

tions will be shown that appear during the evaluation of the application (repeat0 0 3). There

are two processes involved in this reduction sequence. These have been namedparent and

child. The steps carried out by thechild process are shown offset to the right in figure (15).

step parentprocess stepchild process

1 repeat0 0 3
2 sandwich′ G (remote0 0 2)

3 remote0 0 2
4 H 0 0
5 (own10) : 7

6 G (“ remote name” : 7)
7 repeat“ remote name” 14 2
8 sandwich′ G (remote“ remote name” 14 1)

9 remote10 14 1
10 H 10 14

11 G (20 : 21)

Figure 15 : The evaluation of (repeat0 0 3)

The first application of thesandwich′ function (step 2) is a normal sandwich expression. It cre-

ates a job, which is evaluated by the child process. The “remote name” is generated by the

application of theown function in step 5. It is returned with the result, while the value 10,

which it represents is left behind. Via the application ofG (step 6), The remote name is passed

to the next invocation ofrepeat(step 7). The secondsandwichapplication (step 8) generates a
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new job, which carries the remote name back to the child process, where it is replaced by the

subexpression 10. By then, the third parameter to the functionremotehas the value 1, such

that instead of a (new) remote name, the value 20 is returned with the result. The computation

is finished whenG has produced its result.

In the implementation of this mechanism no global name directory is required, because a

remote name carries a system wide address of the expression it represents. This address can be

used to send a job containing a remote name from anywhere in the system back to the creator

of the remote name.

5.2. Aparallel hydraulical simulation

A functional program that implements a mathematical model of the tides in the North Sea26

has been transformed into a version that will run efficiently on a parallel local memory archi-

tecture by the use of theown function in combination with the sandwich strategy. To be able to

apply thesandwichfunction, the original program, which contains cycles, has to be trans-

formed into a program without cycles. Details of this transformation can be found a paper by

one of the authors.27 Here only the essential skeleton of the program will be used to clarify the

annotations.

Without the use of theown function the tidal model would retransmit large matrices on each

iteration of its main recursion. Consequently the program would run much less efficient on a

parallel local memory architecture. The Wang partition algorithm, presented in section 4.3,

only suffers a small loss in efficiency without the own-annotation, due to the fact that the

matrix blocks are only retransmitted once during the whole calculation.

The physical model of the tides repeatedly updates a matrix that contains approximations of

the x-velocity, the y-velocity and the wav eheight of the water in each point of a spatial grid. In

a parallel version of the program the matrix can be split into as many blocks as the degree of

parallelism requires. We only present a partitioning of the matrix into two blocks, to concen-

trate on the annotation issues. Figure (16) shows the main recursion of the program, which is

started with two partitions calledLeft andRight. These partitions will be updated in parallel.

main LeftRight n= repeat Update1 (Left : (Right : (LeftBorderOf Right))) n

repeat f x 0 = GetRemoteData x
repeat f x n = repeat f ( f x) (n − 1)

Figure 16 : The main recursion of the tidal model

The functionUpdate1 submits the matricesLeft and Right to different processors, where the

actual updating takes place in parallel. All subsequent recursive inv ocations ofUpdate1 will

only transmit remote names instead of real matrices, due to the application of theown function

in the remote processors (see below). Therefore a special functionGetRemoteDatais provided,
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to force the transmission of the actual matrices at the end of the main recursion. Figure (17)

presents the functionUpdate1. The process of the updating itself is split into two phases, after

each of which communication of one border of the matrices takes place. The first phase

updates the x-velocity in both matrices and is implemented by the functionsUpdateXleftand

UpdateXright. In the second phase both the y-velocity and the wav eheight are updated by the

functionsUpdateYHleftandUpdateYHright. Both update phases are dependent on each other

and have to be run in sequential order. The left and right parts of each update phase are

executed in parallel.

Update1 M = ‹ UpdateYHleft Left1 › : ‹ UpdateYHright Right1 BorderOfLeft1 ›
WHERE
(Left1 : BorderOfLeft1 ) : Right1 = Update2 M

Update2 (Left2 : (Right2 : BorderOfRight2))
= ‹ UpdateXleft Left2 BorderOfRight2 › : ‹ UpdateXright Right2 ›

Figure 17 : The two phases of the updating with annotations

The illustration of figure (18) shows the desired communication structure ofUpdate1 and

Update2. The dashed arrows represent the transmission of remote names, whereas the solid

arrows denote communication of real data.
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UpdateXleft

own
Left

UpdateYHleft

Update2

Update1
UpdateXright

own
Right

UpdateYHright

Left2

Borders2

Left1

Right2

Right1

Borders1

“left” processor “right” processor

Figure 18 : Communication structure of the tidal model

When transforming the definitions ofUpdate1 andUpdate2 to sandwich versions, the normal-

ising variant of the sandwich has to be used, to obtain the correct sequence of both updates.

Once the evaluator requires the result of the functionUpdate1 (see figure #fig twophase#),

reduction continues with the normalisation of the argumentsLeft1, Right1 andBorderOfLeft1.

This normalisation in turn forces the evaluation ofUpdate2. So Update2 will execute prior to

Update1. The updating of the x-velocities will run in parallel, yielding the normal formsLeft1,

Right1 and BorderOfLeft1, directly followed by the parallel updating of the y-velocities and

wave heights.

Figure (17) shows the need for theown function to avoid redundant data communication. After

completion ofUpdateXleftthe resulting matrixLeft1 is returned and passed unmodified as an

argument toUpdateYHleft. The updating of matrixRight2 follows the same pattern. Both

matrices are received as a result to be immediately retransmitted as an argument to the next

updating phase. If the functionsUpdateXleftand UpdateYHleftwould be evaluated on the

same processor, the matrixLeft1 could be retained in this processor and a remote name could

be returned instead. The same applies to the matrixRight1 and the functionsUpdateXrightand

UpdateYHright. The only real data to be returned and retransmitted is theBorderOfLeft1,
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which travels from the “left” processor to the “right” processor. Figure (19) shows the annota-

tion that is necessary to obtain the desired behaviour:

UpdateXleft Left2 BorderOfRight2 = (own Left1 ) : RightBorderOf Left1
WHERE
Left1 = updateXleft Left2 BorderOfRight2

UpdateXright Right2 = own (updateXright Right2)

Figure 19 : Retention of the left matrix

The functionUpdateXleftreturns a remote name for matrixLeft1 and real data for the border

of Left1. The actual updating takes place in the functionupdateXleft(without capital U).

UpdateXright just returns a remote name for matrixRight1. Both functions retain the actual

matrices in the processors they hav ebeen assigned to by the sandwich. Because the remote

names Left1 and Right1 are passed as arguments to respectively UpdateYHleft and

UpdateYHright, applications of the latter functions will subsequently be allocated as jobs to

the processors where the matricesLeft1 andRight1 reside. By retaining the matrices a consid-

erable saving of communication cost is achieved. If the size of the matrix isn then without the

own function the amount of data to be communicated would have beenn × n, whereas now the

information to be transmitted is of the order ofn.

The functions of the second updating phase are similar to those of the first phase. Because the

main recursion of figure (16) appliesUpdate1 to its own output, one can see that the results of

UpdateYHleftandUpdateYHrightare also redirected without any modification into the next

iteration ofUpdateXleftandUpdateXright. Figure (20) shows the annotation that is necessary

to retain the matrices in their respective processors and to return the actual data of the border

of Right1:

UpdateYHleft Left2 = own (updateYHleft Left2)

UpdateYHright Right2 BorderOfLeft2 = (own Right1 ) : (LeftBorderOf Right1 )
WHERE
Right1 = updateYHright Right2 BorderOfLeft2

Figure 20 : Retention of the right matrix

As before, the update functions (without a capital U) in figure (20) perform the actual updating

of the matrices.

The function to force the transmission of the remote matrices at the end of the main recursion

is shown in figure (21):



112 Parallel graph reduction for divide-and-conquer applications† chap V

GetRemoteData(Left : Right) = ‹ I Left › : ‹ I Right ›

Figure 21 : Retrieval of both matrices

Both Left and Right will always be remote names during the iteration of updates, due to the

effect of the own function (see figures 19 and 20). The two jobs in figure (21) will therefore be

sent to the processors whereLeft andRight happen to reside. Upon reception of these jobs the

remote names will be deleted and after the evaluation of (I Left) and (I Right) the result (Left

andRight) will be returned. No more retention takes place, because the jobs no longer contain

the own function. Finally the two matrices are paired to represent the state of the tidal model

aftern iterations.

6. Formal description of the transformation schemes

In the previous sections we have presented several examples of application programs with jobs

that are annotated by job brackets. Only in the first example (QuickSort) the proposed job-lift-

ing and grain size transformations were actually carried out, resulting in a parallel version of

the application. In this section we present a formal description of the transformations that is

sufficiently general to handle all given example programs.

To describe the job lifting and grain size transformations it is sufficient to define a set of func-

tions operating on restricted syntactic domains.28 In particular, no knowledge of the expression

syntax of SASL is needed. The required domains are listed in figure (22). From the basic

domains the abstract syntax shown in the same figure constructs two composed domains: the

set of tokens and the set of sequences of tokens. It should be noted that the job brackets are

included in the token domain. No higher level syntactic structures need to be recognised in

order to describe the transformations.

Syntactic variables and their domains:

I : Identifiers
L : Literals
O : Operators
T : Tokens
S : Sequences

Abstract syntax:

S ::= T | S T
T ::= I | L | O | WHERE |= | ( | ) |→ | ; | ,

Figure 22 : Syntactic domains and abstract syntax of a definition with jobs

The two main transformation functions are JL (job-lifting) and GS (grain size). Four additional
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functions are used: SQ (sequential), LF (left grain size test), RF (right grain size test) and AF
(annotation). The latter three functions are application dependent and should be specified for

each application separately. That is why their names are provided with a suffix F , which repre-

sents the name of the function being transformed. The function AF decides which of the two

sandwich functions to use, either the strict one (sandwich′ ) or the non-strict version (sand-

wich). The left and right grain size tests (RF and LF ) generate predicates that yieldTRUE

whenever the grain size of the jobs is above an application dependent threshold.

The transformation functions JL, GS and SQ are defined independently of the application by

the equations of figure (23). The job lifting function (JL) transforms a given function definition

into a version where the two jobs are lifted from a general expression into a single function

application. JL also generates a sequential version of the annotated application that will be

called when the grain size drops below the threshold.Next the lifted function definition is

passed to the grain size transformation (GS), which inserts the grain size tests and the sand-

wich application. The auxiliary transformation function SQ serves to replace the name of the

function being transformed by the unique identifierFseq.

Conventions for variables: Conventions for constants:

F : Identifiers G, P,Q : Identifiers
T : Tokens
a, g : Sequences
b, c, d, e, f : Sequenceswithout occurrences of WHERE or =

JL [[ F a = b ‹ c › d ‹ e › f WHERE g ]] =
SQ [[ F ]] [[ F a = b (c) d (e) f WHERE g ]]
GS [[ F a = G (c) (e) WHERE G P Q = b P  d Q f

g ]]

JL [[ F a = b ‹ c › d ‹ e › f ]] =
SQ [[ F ]] [[ F a = b (c) d (e) f ]]
GS [[ F a = G (c) (e) WHERE G P Q = b P  d Q f ]]

GS [[ F a = G (c) (e) WHERE g ]] =
F a = LF [[ a ]] [[ g ]] →

RF [[ a ]] [[ g ]] →
AF G (c) (e)

G (c) (SQ [[ F ]] [[ e ]] )
RF [[ a ]] [[ g ]] →

G (SQ [[ F ]] [[ c ]] ) (e)
G (SQ [[ F ]] [[ c ]] ) (SQ [[ F ]] [[ e ]] )
WHERE g
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SQ [[ F ]] [[ F a ]] = Fseq SQ [[ F ]] [[ a ]]
SQ [[ F ]] [[ T a ]] = T SQ [[ F ]] [[ a ]]
SQ [[ F ]] [[ T ]] = T

Figure 23 : Equations job lifting and grain size transformation

The transformation schemes JL and GS can deal with a function that contains more than one

equation. The variableF matches the function name in the first equation and the variablea

matches all tokens until the equals symbol (=) in the equation with the job brackets (‹ and

› ). Similarly the variableg matches all remaining equations.

Figure (24) shows the functions AF , LF and RF to be used for the transformation of the appli-

cation programs presented in the previous sections. Together with the transformation schemes

of figure (23) they generate parallel sandwich versions of the presented application programs.

In those cases, where the grain size predicates are identical to the functionTRUE, the condi-

tional statements generated by the grain size transformation can be simplified.

LF RF AF

QuickSort length m> Threshold lengthn > Threshold sandwich
FFT halfn > Threshold halfn> Threshold sandwich′
Wang TRUE TRUE sandwich′
Wa veUpdate1 TRUE TRUE sandwich′
Wa veUpdate2 TRUE TRUE sandwich′
Wa veGetRemoteData TRUE TRUE sandwich′

Figure 24 : The functions AF , LF and RF for all applications

7. Relatedwork

In our opinion locality is an important concept in computer architecture.For instance the suc-

cess of virtual memory is largely based on locality in space exhibited by most programs. The

current proposal can be classified as a “locality first” design, which makes it different from

most contemporary research in the area. Related work will be characterised by the importance

attached to the phenomenon of locality in space.

A “ divide-and-conquer” combinator was first introduced by Burton and Sleep.6 The main top-

ics in their paper are network topology and load distribution strategy. A general annotation

scheme for theλ-calculus is developed by Burton,29 which is also applicable to for instance

Turner’s combinators. The annotations can be used to control transportation cost of parallel

tasks. Although the notion of self contained subexpressions is introduced, the paper does not

concern itself with problems associated with practical graph reduction. In recent work, McBur-

ney and Sleep20 propose a paradigm that models divide-and-conquer behaviour. Their results

are based on experiments with transputers but the paradigm is not used in a functional context.
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Linear speedups are reported for small programs.

The “RediFlow” architecture10 provides a global address space, but locality is supposed to be

inherent to the function level granularity. Divide-and-conquer applications are mentioned as

one possible source of parallelism. The problems associated with a template copying imple-

mentation ofβ-reduction in an implementation of theλ-calculus form one of the major topics

of another paper by Keller.30 The way a closure is implemented brings about some locality.

The “serial” combinator8, 31 is introduced as an optimal grain of parallelism in the context of

fully lazy, parallel graph reduction. The practicality of the approach is demonstrated using a

network of processing elements, each with a local store only. The architecture supports a

global address space, in which each processing element is responsible for a portion of the

store. Localityis supposed to be maintained by the way tasks are diffused to the processing

elements to which references exist. In contrast to this approach, the sandwich strategy and job

concept may be viewed as a combination of user annotated strictness and user annotated com-

binators. In addition we propose a “threshold” mechanism to dynamically control the grain

size of parallel computations. Theown function is a user annotated optimisation of data trans-

port.

The “GRIP” proposal11, 13avoids the locality issue by using a (high speed) bus as the connec-

tion medium between all major system components (processing elements and intelligent stor-

age units). The machine exploits conservative parallel strategies and a “super” combinator32

model of reduction. In the “FLAGSHIP” machine, both dynamic task relocation and local

caches are supposed to increase locality of the fine grained packet rewriting on a local memory

architecture.12

8. Conclusions

In a parallel graph reduction machine, the optimality of grains of computation depends on

properties of the application program and the machine architecture. Based on some commonly

observed properties of distributed architectures, a class of application programs has been des-

ignated, which if transformed and annotated according to our guidelines will benefit from par-

allel evaluation on these architectures. In principle our method tries to adapt the locality of the

applications to that of the architecture by copying expressions. Duplication of work is avoided

by changing the order of the calculations. Suitable grains of parallel evaluation are obtained by

grouping certain computations.

Program transformations are necessary to obtain sufficiently large grain computations. With

realistic applications these transformations require substantial effort. However because of the

referential transparency property of functional programs this effort is less than that incurred in

general concurrent programming. It is conceivable that programming tools can be developed to

assist the programmer in applying the program transformations, but we have not investigated

such possibilities.



116 Parallel graph reduction for divide-and-conquer applications† chap V

The sandwich evaluation strategy bridges the gap between divide-and-conquer algorithms and

distributed architectures. The method developed to apply this strategy is independent of the

functional programming language used. The proposed evaluation strategy will fit most normal

order graph reduction systems.

The practicality of the proposed annotations is demonstrated by transformation of four appli-

cations, ranging from the fast Fourier transform to a tidal model, into versions that will run

efficiently on parallel machines based on a local memory architecture.

The control over the generation of parallelism and the grain size is exerted by the applications,

rather than by the system. Heuristics for grain size control are tailor made to the application

program and are therefore a guarantee for best results.

By choosing adequate values for a “threshold” parameter, the maximum number of jobs may

be kept within limits acceptable to the concrete architecture. This topic and the two more prac-

tical issues related to the optimal value of the threshold (see at the end of section 4.1) will be

pursued in part II of this paper.22
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Abstract

A parallel functional program to predict the tides of the North Sea is developed in three stages. 
The first version of the program is obtained by a direct translation of the mathematical model. 
Two successive transformations appear to be necessary to remove inefficiencies and to enlarge 
the grain size of parallel computations. The enlargement of parallel grains is needed to make the 
program well suited for coarse grain architectures. The method to enlarge the grain size, called 
data grouping, can be elegantly expressed in a functional language and has a wide range of 
applications.

1. Introduction 

Functional languages are often considered to be well suited for parallel machine architectures 
[VEG84]. At any given stage during its evaluation a functional program may contain several 
function applications that  can be rewritten (reducible expressions, or  shorter:  redexes).  The 
Church-Rosser property of functional languages offers the theoretical possibility to  evaluate 
these redexes in parallel. However, there are two major problems that limit the exploitability of 
the available parallelism:

1• Not all function applications are needed to compute the final result. So indiscriminate 
(parallel) evaluation of all redexes may lead to a waste of computing resources.

2• Most function applications will not contain a sufficient amount of computation to 
justify the overhead that is incurred by data transmission and process synchronization in parallel 

1 Present address of the author is University of Amsterdam, FVI, Post Box 41882, 1009DB Amsterdam, The 

Netherlands
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machine architectures. The grain size of a function application will be defined as the amount of 
computation needed to evaluate this application.

The  first  problem has  given  rise  to  the  development  of  strictness  analysis  of  functional 
programs. The strictness of a function in its arguments is an undecidable property and can to 
some extent be determined in flat domains by the technique of abstract interpretation [MYC81]. 
The  second  problem  of  grain  size  in  functional  programs,  has  received  some  attention 
[HUD85,HUG84,KEL84].  Also the   grain size of a  function application is an undecidable 
property and has to be compared to the inaccurate notion of communication cost and process 
synchronization overhead. 

2. Grain size enlargement

This paper concentrates on the grain size problem in relation to  a specific class of MIMD-
architectures.  In  these  architectures  the  cost  to  transport  an elementary data  item is large 
compared to  the cost  to  execute an elementary machine instruction (e.g.  a reduction step). 
Many MIMD-reduction machines that  are currently under development belong to  this class 
[BAR87]. It will be demonstrated, with the aid of an example program of moderate size, that it 
is sometimes necessary to perform complicated program transformations in order to obtain a 
useful grain size for these MIMD architectures. This claim is made by considering the source 
text of the program and determining the largest possible grain of parallel computation. Because 
this grain size appears to be still too small for the considered class of architectures, a program 
transformation has to enlarge the grain size.

The grain size that would be obtained by the translation of a program into super-combinators 
[HUG84] or serial-combinators [HUD85] is bound to  be smaller (or  equal) than the largest 
possible grain size at source text level.

The  example  program  has  been  developed  as  a  test  case  for  the  current  design  of  an 
experimental MIMD-reduction machine for the Dutch Parallel Reduction Machine project. The 
program is a  simplified version of a  production program used  by the Dutch Water  Board 
Authority  to  predict  the  tides  of  the  North  Sea.[HEE85,86]  Although  simplified  it  is 
representative for the original program in the sense that speed-up by parallel execution, will 
also hold for the original program. It contains sufficient details (like influence of wind, coriolis 
force, bottom friction etc.) to make a reasonably accurate model of the tides.

Apart from the contribution to the discussion on the grain size problem the paper also adds a 
(parallel) program to the small number of existing functional programs that could serve to test 
the validity of parallel reduction architectures 
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3. The physical problem

This section describes the  basic knowledge of  the  application domain that  is necessary to 
understand the example program. The water movement in an estuary is approximated with a 
mathematical model in two spatial dimensions. This means that  the velocity of the water is 
assumed not to vary in the vertical dimension and so only very large waves, like the tidal waves 
will be modeled appropriately. Figure 1 shows the equations that constitute the approximated 
model.
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where:

h = small variations in the water height u = water velocity in the x-direction

v = water velocity in the y-direction g =  acceleration of gravity (9.8 ms-2)

f = coriolis parameter (1.25 10-4 s-1) λ = bottom friction coefficient (±2.4 10-3 ms-1)

γ = wind transfer coefficient (±3.2 10-6) D = water depth as function of x and y

ψ =wind direction V = wind velocity

FIGURE 1: The linearized shallow water equations.

The first two equations state that the water velocity is proportional to the gradient of the water 
height and the effects of the earth rotation (f), bottom friction (λ) and wind (γ) are included. 
The third equation expresses the conservation of mass. It states that a disappearing quantity of 
water will result in a decreasing water height. 

The numerical approximation of the proposed  equations that  we have used in the example 
program is presented  in figure  3.  (for  a  derivation  see  [HOU68])  The  variables from the 
equations of figure 1 (u, v and h) have been approximated by their values on a spatial grid 
(subscripts i, j respectively in the x, y direction) at discrete points in time (superscript k). Figure 
2 shows that each of the variables u,v,h and the depth D has its own grid that is slightly shifted 
with respect to the others. Such a space-staggered grid allows for an easy boundary treatment.
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FIGURE 2: The space-staggered grid

u 1
,
+k
ji = u k

ji , - g )(
2 ,1,

k
ji

k
ji hh

Dx
Dt

−− +f )(
4 1,,1,1,1

k
ji

k
ji

k
ji

k
ji vvvvDt

++−− +++ - 2∆t 












+
−

+ 1,,

2
, cos

jiji

k
ji

DD
YVlu

v 1
,
+k
ji = v k

ji , - g )(
2 1,,

k
ji

k
ji hh

Dy
Dt

−− +f )(
4

1
,1

1
,

1
1,1

1
1,

+
+

++
−+

+
− +++ k

ji
k

ji
k

ji
k

ji uuuuDt
-2∆t













+
−

+ jiji

k
ji

DD
YVlv

,1,

2
, sin

h 1
,
+k
ji = h k

ji , - ( ) ( ){ }1
,1,,

1
,11,1,14

+
+

+
++++ +−+ k

jijiji
k

jijiji uDDuDD
Dx
Dt

                      - ( ) ( ){ }1
,,1,

1
1,1,11,4

+
+

+
++++ +−+ k

jijiji
k

jijiji vDDvDD
Dy
Dt

FIGURE 3: the finite difference scheme

 It turns out [HEE85,86] that the system of figure 3 is stable under the following condition :

∆t < 2 ∆x ∆y ( )( ) 2/122 −+ DyDxgD

Based on the finite difference scheme the example program will now be developed in three 
stages. The first version of the program is the direct translation of the finite difference scheme 
into SASL and the two subsequent versions are produced by successive transformation of the 
previous  versions.  After  each  stage  the  amount  of  parallelism and  the  grain size  will be 
discussed.

4. The first program

 Because the finite difference scheme is similar to  a set of recursion equations, they almost 
constitute a functional program. For the simple case of a rectangular grid, the corresponding 
SASL  program  is  presented  in  figures  4  and  5.  To  obtain  this  program  all  sub-  and 
superscripted variables (u, v, h and D) in figure 3 are replaced by a function of their sub- and 
superscripts, in the following way: 

u 1
,
+k
ji ⇒ u i j k v 1

,
+k
ji ⇒ v i j k h 1

,
+k
ji ⇒ h i j k D ji , ⇒ D i j
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As an example figure 4 shows the SASL1 function corresponding to  the variable u  that  is 
obtained in this manner. The only additions to the transformed equation are the two initial "if"-
statements. The first one terminates the recursion on the discrete time variable k. The second 
"if" implements the boundary condition of a rectangular grid. (note  that  only i needs to  be 
tested, due to the space staggered grid of figure 2 [HEE85,86]).

u i j k = k = 0 -> u0  i j

i = 0 | i = imax -> 0

u i j (k-1) - heightgradient + coriolis - friction

WHERE 

heightgradient = g * ∆t / (2 * ∆x) * ( h i j (k-1) - h (i-1) j (k-1))

coriolis = f * ∆t / 4 * (v (i-1) j (k-1) + v (i-1)(j+1)(k-1) + v i j (k-1) + v i (j+1)(k-1))

friction = 2 * ∆t * (λ * u i j (k-1) - wind) / (D i j+ D i (j+1))

wind = V * V * cos( Ψ )

FIGURE 4: SASL function for the x-velocity u.

In the same way, the functions corresponding to the variables v and h, are constructed from the 
equations of figure 3 (the second "if" for v should now test j, and no boundary test is needed 
for h). The SASL program is completed by including the initial values of u,v and h and all 
constants ( as an example see figure 5).

u0  i j = 0 || initial values of u e.g. all 0

v0  i j = 0 || initial values of v e.g. all 0

h0  i j = 3 * i / (imax-1) || initial values of h, e.g. a water slope

imax = 100 || rectangular grid with 100 * 100 gridpoints

jmax = 100

∆x = ∆y =10000 ||  = 10 km, so one side of the square estuary  is ∆x * imax = 1000 km

∆t  = 800 || one time step is 800 seconds; the stability condition is satisfied

D i j = 30 ||  Depth function, e.g. constant depth of 30 meters.

|| the other constants ( for their values see fig 1)  have to be included here

FIGURE 5: the first program.

Although the translation of the program closely resembles the original equations, it suffers from 
a serious drawback, namely the recomputation of function applications. From the definition of h 
and u it follows that: (see figure 3 and 4)

h i j k needs the value of h i j (k-1), u (i+1) j k, u i j k
u i j k needs the value of h i j (k-1), h (i-1) j (k-1)

h i j k needs the value of h i j (k-1),h (i-1) j (k-1), h (i+1) j (k-1) 1)

1 We will use both Greek and Roman characters in identifiers and in section 5 we will extend SASL with a 

notation for array subscription.
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and rewriting h (i-1) j (k-1) with 1) →
h i j k needs the value of h i j (k-1), h i j (k-2)

So in the mutual recursive scheme hides a recursion of the Fibonacci type and in fact there is 
such  a  recursion  for  each  variable,  giving  rise  to  exponential  recalculation  of  function 
applications. One solution to this problem could be the use of an applicative cache [KEL81], 
but a cache introduces two other problems. On the one hand, implementing a global cache in 
the considered class of MIMD-architectures, causes a lot of communication overhead. On the 
other hand it complicates reasoning about grain size of computations.

Another solution could be the use of "memo-functions" [TUR81], but in this application they 
appear to  require an unreasonable storage capacity because the values of u,v and h will be 
"remembered" in all grid points at all time steps. Instead we propose a transformation of the 
program into  a finite state  machine, which might also be considered as a  kind of "memo-
function" but with a restricted short term memory (i.e. the state).

5. Transformation to the second version

The second version of the program is obtained from the first one by ordering the calculations in 
such a manner that recomputations will be avoided. The set of recursive difference equations is 
transformed into a finite state  machine, where the state  consists of a matrix containing the 
values of the variables u,v and h in each grid point (figure 6). The program then repeatedly 
distributes the same calculation over all matrix elements (like the map function) and proceeds 
until the desired final state has been reached. The successive creation of new matrices (by the 
repeated  distribution)  does  not  compare  unfavourably  to  an  imperative  program  doing 
destructive updates, because of the following two reasons:

1) For each iteration the algorithm requires all matrix elements to  be recalculated, so 
there is no needless structure copying.

2) Once the new matrix has been calculated there are no references left to the old one 
and memory space can be recovered.

 

matrices  
u,v and h 

Transform  
using  

tabulate 

FIGURE 6: A finite state machine

To deal efficiently with matrices we introduce an array data type, where subscription can be 
performed in constant time. An array will be characterized by a descriptor, containing the upper 



chap VI The Grain Size of Parallel Computations in a Functional Program 127

and lower limit of the index in each dimension 1:

descriptor = (l
1

,u
1

),(l
2

,u
2

)

Subscription of the array variable u is denoted by u[i,j] and results in the value ui,j in constant 

time. "Tabulate f d" is a special function that tabulates a binary function f over all index pairs 
specified by descriptor d. It constructs a 2-dimensional such that:

(tabulate f d) [ i,j ] = f i j , l
1

≤ i ≤ u
1

 , l
2

≤ j ≤u
2

"Tabulate" is the source of parallelism in the finite state  machine of figure 6.  The function 
applications ( f i j ) form the largest grain of parallel computation and should be distributed by 
"tabulate" over the available processors in the MIMD architecture.

Figure 7 shows the second program, where the functions "repeat" and "transform" define the 
finite state machine. The functions fu,fv and fh can be derived from the previous program. For 
instance, the body of (fu u v h i j) in figure 7 can be obtained from the body of (u i j k) in figure 
4 by replacing each occurrence of "i j (k-1)" by "[i,j]". The definitions of fv and fh are derived 
in the same way.

1 The array data type is shown for the case of two dimensions because the example program only needs two 

dimensional arrays.
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solution  n =  repeat n (uinit,vinit,hinit) ||  u,v,h after n time steps

repeat 0  ( u, v, h )  = ( u, v, h )

repeat n  ( u, v, h )  = repeat (n-1) (transform u v h)

dscru = (0,imax     ) , (0,jmax -1) || array descriptor of u

dscrv = (0,imax -1) , (0,jmax     ) || array descriptor of v

dscrh = (0,imax -1) , (0,jmax -1) || array descriptor of h

transform  u v h || calculates the matrices at the next time step

|| (u1,v1,h1) from the current ones (u,v,h)

= ( u1, v1, h1 )

WHERE 

u1 = tabulate (fu  u   v   h)  dscru 

v1 = tabulate (fv  u1 v   h)  dscrv

h1 = tabulate (fh  u1 v1 h)  dscrh

fu  u v h i j 

= i = 0 | i = imax -> 0

u[ i, j ] - heightgradient + coriolis - friction

WHERE 

heightgradient = g * ∆t / (2 * ∆x) * ( h[ i, j ] - h[ i-1, j ] )

coriolis = f * ∆t / 4 * (v[ i-1, j ] + v[ i-1, j+1] + v[ i, j ]+ v[ i, j+1 ] )

friction = 2 * ∆t * (λ * u[ i, j ] - wind) / (D i j + D i (j+1) )

wind = V * V * cos( Ψ )

fv  u v h i j || constructed like (fu u v h i j) from the body of (v i j k)

fh u v h i j || constructed like (fu u v h i j) from the body of (h i j k)

uinit = tabulate u0  dscru || initial values of u,v and h

vinit = tabulate v0  dscrv

hinit = tabulate h0  dscrh

||the rest of the definitions are identical to those needed in figure 5

FIGURE 7: The second program

Although the program of figure 7 does not recompute function applications it is still far from 
being well suited for large-grain parallel distribution. This is because the functions fu,fv and fh 
which are distributed by tabulate do not have recursion. Worse yet they contain a lot of small 
array references (that  might cause data communication). There is no way to  arrange for an 
efficient  implementation  of  tabulate  under  these  circumstances.  The  most  efficient  way is 
probably to cut the matrices into regular pieces, distribute these parts and to require a remote 
processor to perform the tabulate on that piece it happens to receive. However, when the array 
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references do not exhibit locality, each processor will have to make as many global references 
as it  received array elements and thus communication cost  grows as fast as the amount  of 
computation.  (i.e.  proportional to  the number of array elements).  If the array references do 
have locality,  then an implementation of tabulate  cannot  know how to  divide the  matrices 
without corrupting locality.

6. Transformation to the third version

The next transformation constructs a course grain parallel program by using the presence of 
locality in the grid point calculations of the previous program. Because of this locality it is 
possible to split the original finite state machine (of figure 6) into several communicating finite 
state machines, without a significant increase of communication cost. This is accomplished by 
dividing the original matrices (u,v  and h) into  several subparts  and to  associate  with each 
submatrix a function that is almost identical to the program of figure 7. To save space and to 
gain clarity the transformation is only elaborated for the simplest case of two submatrices (see 
figure  8),  but  extension  to  more  submatrices  is  straight  forward.  The  number  of  parallel 
processes (submatrices) is limited by a communication-processing trade-off. The amount  of 
computation per process is proportional to the number of grid points in a matrix partition and 
grows with the square of the size of the partition. The amount of communication, however, is 
proportional to the number of border grid points and only grows linearly with the size of the 
partition. Given a sufficiently large problem, this property theoretically allows the program to 
be adjusted to any communication speed and any amount of parallelism.

It  is important to  notice that  the functions fu,fv and fh of the second program can be used 
without  modification in the third version i.e.  the transformation merely adds a layer to  the 
program. This layer describes a set of communicating processes, each of which comprises the 
unmodified functions of the second program. This elegant structure might well be attributed to 
the hierarchical structure of functional programs.

 

Proc 
1 

Proc 
2 

( ul , vl , hl ) ( ur , vr , hr ) 

borders 
of u,v and h 

left part 
of  u,v and h 

right part 
of  u,v and h 

FIGURE 8: A partition in two processes

Both  processes in figure 8 are  course grain, as they are  continuously updating half of the 
original matrices. They can also be conveniently distributed to different processors as only their 
borders have to be transmitted after each time step. The partition of the matrices is based on the 
precise lay-out of the space staggered grid. Without going onto details, one can compare the 
descriptors of the left and right matrices in figure 10 with the illustration of the partitioned grid 
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in figure 9. The column ulk and the columns vr0 ,hr0 in figure 9 constitute the borders that have 

to be communicated between the left-and right process.
 

ul    vl     hl 

ur    vr    hr 

0 1 2 k imax 
0 

2 
1 

jmax 
0 1 2 k 

FIGURE 9: The grid partition

k = imax / 2 || imax assumed to be even

dul = (0      ,k      ) , (0,jmax -1) || descriptor of u-left

dvl = (0      ,k - 1) , (0,jmax     ) || descriptor of v-left

dhl = (0      ,k - 1) , (0,jmax - 1) || descriptor of h-left

dur = (k + 1,imax) , (0,jmax - 1) || descriptor of u-right

dvr = (k,imax - 1) , (0,jmax     ) || descriptor of v-right

dhr = (k,imax - 1) , (0,jmax - 1) || descriptor of h-right

ul0 = tabulate u0 dul || initial u-left matrix 

ur0 = tabulate u0 dur || initial u-right matrix

|| similar definitions for vl0,vr0,hl0 and hr0 using their corresponding descriptors

|| the rest of the definitions are identical to those of figure 5

FIGURE 10 : the descriptors and initial values of the partitioned matrices.
 

(ul  ,  vl  ,  hl   ) 

(ul  , vl   , hl    ) 
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k k+1 k 

(ul  ,  vl  ,  hl   ) 
k k k 
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(ur  ,  vr  ,  hr   ) 
k k+1 k+1 

(ur  ,  vr  ,  hr   ) 
k k+1 k 

(ur  ,  vr  ,  hr   ) 
k k k 

0 0 0 

FIGURE 11: the structure of the third program (refinement of figure 8).
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The program structure is illustrated in figure 11. For the sake of clarity the three matrices u, v 
and h have been grouped together (matrix triplet)  and are passed as such from function to 
function, although each function only updates one of the three matrices. The left and right 
process each consist of three functions, interconnected by infinite lists (streams) of matrix-
triplets. The two triangles at the bottom of figure 11 represent the initial pairing function that 
prefixes the infinite lists (mfh and mgh) with the initial matrices. The functions Fu,Fv and Fh 
process the left matrix-triplet stream. They contain respectively the unmodified functions fu,fv 
and fh of the second program (figure 7). Gu,Gv and Gh process the right triplet stream and also 
contain fu,fv and fh.

Communication  between  the  two  processes  is  performed  by  the  function  'First',  which 
continuously  transmits  the  first  columns  of  'vr'  and  'hr',  and  the  function  'Last',  which 
continuously transmits  the  last  column of  'ul'.  The  SASL  program  corresponding  to  the 
illustration of figure 11 is shown in figure 12:
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solution  k = mfh   k , mgh   k   || the estuary after  k  time steps

mfh = Fh ( Fv  mfu) || the left process

mfu = Fu ( mf0 : mfh )  mghds

mfulst = Last  mfu

mgh = Gh  mfulst  ( Gv mfulst mgu ) || the right process

mgu = Gu  mg

mg = mg0 : mgh

mghds = First  mg

mf0 = ( ul0, vl0, hl0 ) || the initial triplets

mg0 = ( ur0, vr0, hr0 )

Fu (( u,v,h ) : Restuvh )  (( vc,hc ) : RestvhCol)

= ( u1,v,h) :  Fu  Restuvh  RestvhCol

WHERE u1 = tabulate ( fu u (appendcol v vc) (appendcol h hc))  dul

Fv  (( u,v,h ) : Restuvh )

= ( u,v1,h ) : Fv  Restuvh

WHERE v1 = tabulate ( fv u v h )  dvl

Fh  (( u,v,h ) : Restuvh )

= ( u,v,h1 ) : Fh  Restuvh

WHERE h1  = tabulate ( fh u v h )  dhl

Gu  (( u,v,h ) : Restuvh )

= ( u1,v,h ) :  Gu  Restuvh

WHERE u1 = tabulate ( fu u v h )  dur

Gv  (( u,v,h ) : Restuvh ) ( uc : RestuCol )

= ( u,v1,h ) : Gv  Restuvh  RestuCol

WHERE v1 = tabulate ( fv (prependcol u uc) v h )  dvr

Gh  (( u,v,h ) : Restuvh) ( uc : RestuCol )

= ( u,v,h1 ) : Gh  Restuvh  RestuCol

WHERE h1 = tabulate ( fh (prependcol u uc) v h )  dhr

First  (( u, v, h ) : Restuvh ) = (firstcol v, firstcol h) : First Restuvh

Last (( u,v,h ) : Restuvh ) = lastcol u : Last Restuvh

firstcol  matrix = || returns the first column of matrix

lastcol  matrix = || returns the last column of matrix

appendcol  matrix  col = || appends column after the last column of matrix

prependcol  matrix  col = || prepends column before the first column of matrix

|| the definitions of figure 7 and 10 should be included here

FIGURE 12: the third program .
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To run the program on a two processor system, the function applications defining the streams 
"mfh, mfu and mfulst" should be evaluated on one processor and those defining "mgh, mgu, mg 
and mghds" on the other processor. In a parallel implementation of SASL, these streams can be 
marked, to communicate the programmers intentions to the compiler. The proposed annotation 
of streams serves two purposes: it indicates the coarse grains of parallelism and it prescribes the 
static distribution of these grains.

It is interesting to know how much the second program is slowed down by the addition of the 
distribution layer. Counting reduction steps of both programs on the same input showed an 
overhead of 2%. A simulation of a 104 km2 estuary during one hour of physical time took 
respectively 201597 and 204719 combinator reduction steps for program 2 and 3.

7. Data grouping

The essential part of the technique that is used in section 6 to enlarge the grain size of parallel 
computations, can be emphasized by giving a one dimensional example without recursion:

ParTabulate F (1..10) ⇒  SeqTabulate F (1..5) in parallel with  SeqTabulate F (6..10)

The function ParTabulate is supposed to distribute all the applications (F i), for i=1..10 over the 
available processors,  yielding ten parallel grains with a size of one application of F. In the 
transformed program, however, SeqTabulate will perform five applications of F sequentially, 
resulting in two parallel grains of five applications of F. We would like to call this method "data 
grouping" because many fine grained applications are grouped into one larger grain.

8. Conclusion

A program of moderate size and complexity (a model of the tides in the North Sea) has been 
developed in SASL, containing a flexible grain size that can be adjusted to fit a large class of 
MIMD-architectures.  It  is demonstrated  that  in a  functional language the  program can be 
developed in a systematical way. Two successive transformations are applied to a program that 
is  obtained  by  a  direct  translation  of  the  mathematical  model  into  SASL.  The  first 
transformation removes inefficiencies due to exponential recalculation of function applications. 
The  second  transformation,  called  "data  grouping",  enlarges  the  grain  size  of  parallel 
computations.

In a functional language, the latter transformation can be added to the sequential program as a 
separate  layer.  This  distribution  layer  can  be  elegantly expressed  as  a  set  of  concurrent 
processes,  communicating via streams.  Annotation of the  obtained coarse  grain parallelism 
(required for a practical parallel implementation) by marking of the appropriate streams, also 
indicates the static distribution of these grains.

The data grouping transformation has a wide range of applications, in particular those based on 
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regular grid calculations (e.g. immage processing).
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abstract

Process networks can be elegantly expressed in functional languages by tail-recursive functions 
interconnected by lazy streams. In a graph reduction system these kind of application programs 
give rise to cyclic graphs. It is shown that a network of synchronous processes with possibly 
cyclic  interconnections  can  be  transformed  into  a  single  acyclic  synchronous  process  by 
eliminating all streams. A formal definition of this transformation that we call communication 
lifting is presented. As an example two application programs (a tidal model for the North Sea 
and a simulation of digital hardware) are transformed and mapped onto a coarse grain parallel 
reduction model that only supports strict argument parallelism. Such a mapping is not possible 
for the original application programs, because there is no way to express the required "pipe-
line" parallelism of streams in a reduction model only based on strict operator parallelism.

1 Introduction

Functional languages with normal order semantics can be implemented efficiently on sequential 
architectures  by graph reduction  [PEY87a].  The  program is represented  by a  graph data-
structure in which data and computations may be shared. The basic mechanism of computation 
is the rewriting of parts of the graph according to certain graph rewrite rules. A sub-graph that 
can be rewritten according to such a rule is called a redex (reducible expression). The process 
of rewriting is repeated until a certain halting criterion is met. For instance, reduction may be 
stopped when the root node of the graph is no part of any redex. The graph is then said to be 
on root normal form (also called head normal form in the world of term rewriting). In section 3 
we introduce a notation for graphs and graph rewrite rules adopted from CLEAN [BRU87, 
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BAR87a,b], which is an intermediate language specially designed to study both theoretical and 
practical properties of graph reduction. It will be used to denote rewrite rules and to describe 
the reduction behaviour of application programs based on concurrent processes.

In practical graph rewrite systems reducible expressions are always disjoint (because the rules 
are weakly regular [BAR87a]).  This implies that  once a subgraph classifies as a redex, this 
situation will not change when other redexes are rewritten. Thus multiple redexes may be safely 
rewritten  in  parallel.  The  possibility of  parallel  graph  rewriting  is  the  reason  that  graph 
reduction  is  often  considered  as  a  suitable  computational  model  for  parallel  computer 
architectures. One can interpret the program graph as a collection of potential parallel rewrite 
processes, where the graph expresses the communication and synchronisation needs between 
these processes [PEY87b].

Parallel computer architectures can be divided into architectures that support a global address 
space and those that do not. A global address space may be implemented on a shared memory 
or on a distributed memory. Parallel reduction machines are currently being implemented on 
both types of architectures [PEY87b, WAT87, HUD85]. Within the framework of the Dutch 
Parallel Reduction Machine Project [BAR87c], we have constructed an experimental machine 
[HER89] consisting of a collection of processors, each one equipped with a local memory. The 
processors are interconnected by a communication network, based on dual ported memories. It 
was decided not to support a global address space on this machine, because the hardware does 
not allow an efficient implementation.

There is a fundamental difficulty in implementing normal order  graph reduction on parallel 
architectures that do not support a global address space. The problem is how to distribute the 
global  graph  representation  over  the  available  disjunct  storage  spaces.  Although  the 
interconnection  of  processors  by  dual  ported  memories  provides  a  high  communication 
bandwidth, our  architecture still charges a significant communication cost  to  transport  data 
from one memory to another. Because the cost to perform a single graph rewrite action can 
vary widely from fine grain to coarse grain it is not easy to decide which parts of the graph are 
worth being transported and reduced in parallel.

The approach that we have taken to implement normal order graph reduction on our parallel 
architecture is characterised by a compromise between pure graph reduction and pure string 
reduction. Within the local memories pure graph reduction is performed. When coarse grain 
sub-graphs are detected,  they are transported and reduced in parallel on remote processors. 
This regime would be equivalent to string reduction, because transporting a sub-graph implies 
that it is copied to another storage space. To avoid the duplication of work, implied by pure 
copying, we have designed a special reduction strategy, which guarantees that the sub-graph to 
be transported is a primary redex (a primary redex contains no other redexes). For divide-and-
conquer  problems this reduction model has been demonstrated  to  yield good  results on an 
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experimental architecture [HAR88, VRE88].  A similar approach to  parallel graph reduction 
with significant speed-up figures is reported in [MCB87].

The main subject of this paper is to demonstrate that apart from divide-and-conquer problems 
another class of programs, modelling process networks, can also be executed efficiently with 
our parallel reduction model. Writing a functional program as a network of stream processing 
functions  is  already discribed  by Kahn [KAH74]  in  1974.  However,  the  purpose  of  the 
technique he introduced was purely theoretical, namely to  describe the semantics of a set of 
communicating processes. Later this mathematical technique became of practical importance 
[WRA86, KEL89] , as efficient implementations of lazy functional languages emerged.

For a subset of application programs written as process networks we show that it is possible to 
eliminate all streams and therefore also cyclic stream connections by a program transformation 
that  we  call  communication  lifting.  The  transformed  programs  can  be  mapped  onto  our 
reduction  model,  which  only supports  strict  operator  parallelism.  Such  a  mapping  is  not 
possible for the original application programs, because there is no way to express the required 
"pipe-line" parallelism of streams in a reduction model only based on strict operator parallelism.

In addition to communication lifting two other transformations, called the  sandwich- and the 
own-transformation are informally described. These transformations are used to map programs 
resulting from communication lifting onto our parallel reduction model.

2 Job model

In  our  reduction  model the  programmer  is required  to  annotate  needed  coarse  grain sub-
expressions, that  we call jobs. Annotated jobs are evaluated by a special reduction strategy. 
Both annotation and strategy are effectuated by a rewrite rule called sandwich.

 

Sandwich  F  (G  a   a   ..)   (H  b   b   ..) 1 2 1 2 

(G  a   a   ..) 1 2 (H  b   b   ..) 1 2 

Processor 2 

Processor 1 

Processor 3 

Figure 1: The sandwich annotation of two jobs

In figure 1 an occurrence of the sandwich rule is illustrated. The sandwich expression has the 
same meaning as  F (G a1 a2 ...) (H b1 b2 ...).  Function  F must be strict in all its arguments. 

These  arguments  have  to  be  coarse  grain  computations  (jobs).  The  sandwich  rewriting 
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proceeds as follows: First the expressions a1 a2 ...  and b1 b2 ...  are reduced to normal form. 
This transforms the jobs G a1 a2 ...  and H b1 b2 ...  into primary redexes. Next these primary 

redexes  are  transported  to  remote  processors,  where  they are  reduced  to  normal form in 
parallel. Reduction of  F is delayed until the results of its arguments are returned. Instead of 
transporting jobs to  remote processors they may also be reduced locally, but a copy of the 
jobgraph will still be made.

To benefit from parallel execution, the application program must be transformed in such a way 
that a sandwich function can be inserted. This means that potential jobs have to be lifted to the 
same level, because they have to be annotated by one sandwich expression. Though this may 
seem an unnecessary constraint, it has the advantage that the implementation of the sandwich 
only has to synchronise once for all denounced jobs (one context switch). Also the availability 
of several jobs simultaneously, offers the possibility for better  load-balancing decisions than 
when jobs are discovered one by one.

The main disadvantage of the presented  job-model for  parallel reduction is that  only strict 
argument parallelism is supported. Application programs written as process networks do not 
seem to  fit into  our  job-model,  even though these application programs do  exhibit a  clear 
coarse grain structure (the processes).

Process  networks  are  modeled  in  a  functional  language  by  tail  recursive  functions 
interconnected via streams. Streams are (infinite) lists that are produced and consumed element 
by element. If such functions (functional processes) would be distributed using the sandwich 
construct  the special reduction strategy would normalise the streams, destroying the stream-
property of element-wise production and consumption.

An additional difficulty arises when the interconnection pattern of a process network exhibits 
cyclic  structures.  Such  programs  cannot  be  split  into  separate  independent  jobs.  In  the 
remainder of this paper these problems will be examined and solutions will be presented that 
yield an efficient mapping of (cyclic) process networks onto the job model.

3 Graph rewriting

To discuss the graph-reduction behaviour of process networks we adopt a linear notation for 
graphs and graph rewriting from CLEAN [BRU87, BAR87b]. Each node in a CLEAN-graph 
contains a constructor  symbol and is identified by a unique label. Constructor  symbols start 
with a capital letter and labels are introduced by a post-fix colon. In principle each node may be 
supplied with a unique label, but often labels will be omitted when nodes are not shared. Two 
examples of a CLEAN-graph are given in figure 2. The examples illustrate the use of labels to 
denote sharing and cycles in a graph.
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Cons 

3 

mul 

3 

linear notation: n: Cons (3 n) linear notation: Mul m: 3  m

Figure 2:  Linear notation for two graphs

The first example is a graph representing the infinite list 3,3, ....  The second example denotes 
the squaring of 3.

Graph rewrite rules consist of a redex pattern on the left-hand side and a contractum pattern on 
the right-hand side. Both patterns are CLEAN-graphs that  may contain variables identifying 
arbitrary nodes. Consider for example the following rewrite rule:

Skip  (Cons  x  (Cons  y  z)) → Cons  x  z

The redex pattern contains three variables: x, y and z. Each of these variables is bound to a sub-
graph during the matching of the redex pattern to  the program graph. The top node of the 
matched sub-graph (which must contain the constructor symbol Skip) is then replaced by the 
graph specified by the contractum pattern. This means that the constructor symbol in the top 
node (Skip) is overwritten by Cons and that two pointers in the node are directed to the graphs 
matched by x and z.

Consider for example the reduction of the graph (Skip (Cons 3 (Cons 4 5)). The rewrite action 
according to the rule for Skip can be described with the linear notation in the following way:

k: Skip  (Cons  l  (Cons m  n))  → k:  Cons  l  n

l: 3

m: 4

n: 5 

The  arrow  (→)  in the  first  line indicates  that  the  node  labeled  k at  the  left  hand side is 
destructively updated with the contents specified at  the right hand side. The same reduction 
step can also be described in a graphical notation as shown in figure 3:
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 Skip k: 

Cons 

3 l: Cons 

5 n: 4 m: 

Cons k: 

Figure 3: A graph rewrite

To present a case analysis of the reduction behaviour of process networks, we use the linear 
notation. The reduction steps can be easier presented using the linear notation than by drawing 
a sequence of pictures.

The sequential reduction order that is used in the examples of section 4 is determined by the 
functional strategy. This strategy performs reduction in much the same way as is usually the 
case in lazy functional languages. An operational description of this strategy can be found in 
[BRU87]. The strategy performs reduction in a left-most order.  An important aspect of the 
strategy is that the process of matching a redex pattern may trigger recursive rewrite actions on 
the graph that is being matched.

4 Sequential graph reduction of process networks

In this section the graph reduction behaviour of cyclic process networks is illustrated with the 
aid of an example derived from a parallel simulation program for the tides in the North Sea. For 
the example an ad-hoc transformation is presented that results in an acyclic program, which can 
be  mapped  onto  the  job-based  reduction  model.  Based  on  the  ideas  behind  the  ad-hoc 
transformation,  a  general  transformation  technique  (communication  lifting)  is developed  in 
section 5.

4.1 An example of a process network

As an example of  a  parallel functional program that  is written  as  a  process  network,  we 
consider a tidal model of the North Sea. In [VRE87] it is shown that such a functional program 
can  be  developed  from  the  mathematical  description  by  a  number  of  systematical 
transformations. The use of processes connected by streams allows an elegant transformation of 
the sequential version of the tidal model into a coarse grain parallel version.

The program is based on a quantisation of physical reality on a two dimensional spatial grid, 
represented in the program by a matrix. To simulate the tides, the matrix is repeatedly updated, 
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yielding a sequence of values that represent the physical state of the model at consecutive time 
steps. For the purpose of this section it is sufficient to consider a simplified model of the tidal 
simulation, which defines two coarse grains of parallelism. In figure 4 rounded boxes represent 
processes that consume and produce infinite lists (represented by arrows). The triangles at the 
bottom of figure 4 represent Cons-nodes that prefix the infinite lists by the initial values of both 
parts of the matrix (mleft and mright).

 

F G 

b: mleft e: mright 

a: d: 

f: c: Select4 

Figure 4: A simplified model of a parallel tidal simulation program

To obtain the coarse grains of parallelism the original matrix of the tidal model has been divided 
into two equal parts with the intention to calculate the updating of these parts in parallel (by 
processes F and G in figure 4). The process Select4 is the main expression that produces the 
output of the simulation.

Although the program of figure 4 exhibits a coarse grain parallel structure, it does not fit into 
our job-model. The reason for this is the presence of global cyclic connections between the 
coarse grain parts of the program. Because a job is by definition a subgraph, cyclic structures 
always have to lie inside a job. Consequently the global cycles in figure 4 have to be part of one 
job that will be reduced sequentially.

Detailed measurements of the graph structure during sequential evaluation of the tidal model 
[HAR87], have shown that the global cycles disappear in an early stage of the execution. This 
means that although the initial graph is cyclic, most of the reduction work takes place in an 
acyclic graph, which might fit in our job-based reduction model. This observation has provided 
the  incentive  to  look  for  a  transformation  that  eliminates  possible  cycles  from  process 
networks.  Before  presenting  this  "communication  lifting"  transformation  we  show  by an 
example why the cyclic structure only persists for such a short time during reduction.

The simplified program of figure 4 is sufficient to illustrate that the reduction behaviour of a 
cyclic process  network  can  be  split  into  two  different  phases.  In  the  first  phase  a  cyclic 
structure  develops  the  spine  of  all  infinite  lists  until  the  elements  required  by the  main 
expression are produced. During the second phase the required elements are evaluated in an 
acyclic graph. As all computations of the physical model still remain to  be done, the second 
phase requires much more time to reduce than the first.
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In practice, a program like the tidal model, will be run to compute several snapshots of the tides 
during the evolution of the simulation. A main expression with this behaviour would be too 
complicated  for  a  detailed  presentation  of  the  reduction  process.  Therefore  we  assume a 
simplified main expression (represented  in figure 4  by  Select4)  that  only selects  the  fourth 
element of the left stream (a). This will result in the computation of the left part of the state of 
the model after four simulated time slices. Representing the matrix-update operations inside F 
and G by Mf and Mg, the rewrite rules corresponding to figure 4 are the following:

Start → Select4  a

a:  Cons  b  c

b:  mleft

c:  F  a  d

d:  Cons  e  f

e:  mright

f:   G  d  a

F  (Cons  x  xr) (Cons  y  yr) → Cons  b  c

b:  Mf  x  y

c:  F  xr  yr

G  (Cons  x  xr) (Cons  y  yr) → Cons  e  f

e:  Mg  x  y

f:   G  xr  yr

Select4  (Cons  x1  (Cons  x2  (Cons  x3  (Cons  x4  rest)))) → x4

Figure 5:  The rewrite rules corresponding to figure 4

The program is started with an initial graph consisting of the single node Start. Rewriting the 
start  expression once,  results in the graph  Select4 a.  In this graph the function  Select4 will 
select the fourth element of the list rooted at node a. The subgraphs mleft and mright represent 
respectively the left- and the right part of the matrix containing the initial state of the model.

To rewrite Select4 a, according to the functional strategy, means that the graph at node a will 
have to be reduced until it matches the required redex pattern of four Cons nodes. During this 
process the sub-graphs that match the variables x1,  x2,  x3 and x4 are not further reduced. We 
show the reduction steps, in functional order, that have to be performed to obtain the required 
matching of the graph rooted at a.

The initial graph in figure 6 is the graph rooted at node a, where all nodes have been provided 
with  a  subscript  zero.  To  the  right  of  the  initial graph  the  first  five reduction  steps  are 
illustrated, which are necessary to  match  a0 to  the four  Cons nodes in the redex pattern of 

Select4. These five reduction steps constitute the first phase of the reduction process, during 
which the spines of the lists are developed.
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A rewrite action is indicated by a dashed arrow, and the rewritten top node plus all new nodes 
introduced by the rule are listed directly to the right of the arrow. The new nodes have to be 
provided with unique labels. The identifiers for new node labels are derived from the identifier 
in the rule plus a subscript. When a redex is rewritten the node label is not repeated at the right 
side of the arrow, to stress the fact that it is the same node as the one to the left of the arrow. 
For instance  c0: F a0 d0 → Cons b1 c1 means that  the node  F  at  c0 is rewritten to  a  Cons 
node and its pointers are redirected to the (new) nodes at b1 and c1.

initial graph steps 1 and 2 steps 3 and 4 step 5
a0:  Cons b0 c0
b0:  mleft

c0:  F  a0  d0     → Cons  b1  c1
b1: Mf  b0  e0

d0:  Cons e0 f0 c1: F  c0  f0     → Cons  b2  c2
e0:  mright b2: Mf  b1  e1
f0:   G  d0  a0     → Cons  e1  f1 c2: F  c1  f1     → Cons b3 c3

e1: Mg  e0  b0 b3: Mf  b2  e2
f1:  G  f0  c0     → Cons  e2  f2 c3: F  c2  f2

e2: Mg  e1  b1
f2:  G  f1  c1

Figure 6: Rewriting the program of figure 5 in linear notation.

The initial graph contains two rewritable subgraphs at the nodes c0 and f0. The node at c0 is an 
occurrence of the rule for F, because both its arguments (a0, d0) are applications of the Cons 
constructor. For the same reason the node at f0 is an occurrence of the rule for G.

The functional strategy will try to develop a spine of four Cons nodes starting from node a0, to 
match the redex pattern of the  select4-rule. The node at  a0 is already a  Cons node, so the 
strategy first rewrites the redex at  c0 to obtain the second Cons node needed for the match. 
After rewriting c0, the next redex that has to  yield a  Cons node is  c1. However, during the 
matching of the F-rule to  c1, a recursive rewrite of the redex at  f0 will occur, to convert this 
node (f0) into a  Cons node, as required by the pattern of  F. The rest of the reduction steps 

follows the same order as the first three steps.

The graph rooted  at  a0 that  is obtained in figure 6 after five reduction steps is redrawn in 

figure 7,  using a  graphical notation,  to  illustrate  some characteristics  of  this  graph.  Three 
different structures can be distinguished in figure 7. The first is the beginning of the spine of the 
infinite list at  a0,  (the nodes  a0,  c0,  c1 and  c2).  The second structure  is an acyclic graph, 

specifying a communication pattern between the matrix update operations  Mf and  Mg.  The 
third part of the graph is a cyclic structure involving F and G, that forms a generator for both 
the spine and the communication pattern.
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 a0: Cons 

c0: Cons 

c1: Cons 

c2: Cons 

c3: F 
b3: Mf 

b2: Mf 

b1: Mf 

b0: mleft 

f1: Cons 

e2:Mg 

e1:Mg 

e0: mright 

f2: G 

Figure 7: The program graph after five reduction steps

Because the spine at  a0 consists of four Cons nodes, the rewrite rule for Select4 can now be 

applied. The result of this rewrite is shown in figure 8. 
 root: Mf 

b2: Mf 

b1: Mf 

b0: mleft 

e2: Mg 

e1: Mg 

e0: mright 

Figure 8: The second phase of the reduction process

The generator has disappeared and the cycles with it. Just the communication pattern between 
the matrix-update functions is left behind. The graph, however, still represents a considerable 
amount of work.  The functions  Mf and  Mg contain quite complex updating actions on the 
matrix of  the  tidal model.  Five applications of  these  functions remain to  be reduced.  The 
number of reduction steps involved dwarves the six steps that were required to obtain the graph 
of figure 8. The graph in figure 8 also suggests a distribution of the reduction work over two 
processors, where the functions Mf are evaluated on one processor and the functions Mg on the 
other.

4.2 Communication lifting of the example program 

The graph reduction  example in the  previous  section  illustrates  that  cyclic structures  in a 
process network, appear to  be generators for a possibly complex but acyclic communication 
pattern between calculations contained in the processes. The mechanism of lazy evaluation first 
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develops the communication pattern and then discards the generators  before evaluating the 
major part  of the computations.  The question arises whether  it  is possible to  construct  an 
acyclic generator  for  these patterns  in a  systematical way.  A general method  to  obtain an 
acyclic program that is equivalent to a process network is presented in the next section. The 
idea behind the method is illustrated in figure 9:

 

C1 C2 C3 

P1 P2 P3 
P 

C1 C2 C3 

Figure 9: Communication lifting

The left hand side of figure 9 shows three processes P1,  P2 and P3. The arrows between the 
processes represent streams that model the communication between processes. One can think 
of a process as being composed of two parts (the white and shaded areas in figure 9). One part 
(white) deals with the incoming and outgoing streams. Data is selected from the input streams 
and passed to a second part (shaded) where the actual calculations are performed. The obtained 
results are combined into the output stream by the first part again. Under certain conditions it is 
possible to isolate the communication parts of P1,  P2 and P3 and combine them into a single 
process  P. The calculation parts  C1,  C2 and  C3 remain unchanged. They are called by P as 
normal function applications involving no streams. Because the communication that originally 
occurs between  P1, P2 and P3, now takes place inside a single process on a higher level, we 
have called the transformation method  communication lifting. The processes  P1,  P2 and  P3 
have to meet certain synchronisation constraints before communication lifting can be applied. 
Processes  that  fulfil these  conditions  are  called  synchronous  processes.  The  definition  of 
synchronous processes and the lifting transformation are described in the next section.

In the remainder of this section we present the acyclic program for the simplified tidal model 
(see figure 10) that is obtained by communication lifting of the cyclic version (of figure 5). We 
show that reduction of this program produces exactly the same computational graph as with the 
cyclic version (namely the graph of figure 8).  This demonstrates  that  communication lifting 
indeed produces an acyclic generator for the program of figure 5.

Start → Select4  a

a:  Proc  b  c

b:  mleft

c:  mright
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Proc  x  y → Cons  x  a

a: Proc  b  c

b: Mf  x  y

c: Mg  y  x

Figure 10: The acyclic rules corresponding to figure 4

Although the lifted version looks simpler than the original cyclic generator (figure 5), this is not 
the case for larger programs like the complete tidal model. When communication patterns in 
these  type  of  applications  grow  more  complicated,  the  lifted  version becomes  difficult  to 
understand.  This is because the knowledge of how processes communicate is hidden in the 
order of the many parameters that  have to  be passed to  the single recursive function that is 
obtained by communication lifting (like x and y in Proc ). 

Like in the previous section, rewriting of the initial graph Start produces the graph Select4  a . 
Four subsequent reduction steps generate the spine of a until the four Cons nodes required by 
Select4 are developed:

a0: Proc b0 c0    →    Cons  b0  a1
b0: mleft a1: Proc  b1  c1      →      Cons  b1  a2
c0: mright b1: Mf  b0  c0 a2: Proc  b2  c2      →      Cons  b2  a3

c1: Mg  c0  b0 b2: Mf  b1  c1 a3: Proc  b3  c3      →      Cons  b3  a4
c2: Mg  c1  b1 b3: Mf   b2  c2 a4: Proc  b4  c4

c3: Mg  c2  b2 b4: Mf  b3  c3
c4: Mg  c3  b3

The next reduction step is the application of the rule for Select4. It rewrites to the graph rooted 
at  b3, the fourth element of the spine. The reader may verify that the graph below node b3 is 

homomorph with the graph of figure 8.

Using the sandwich rule of section 2, the lifted program of figure 10 can be mapped onto the 
job-based parallel reduction model. The resulting program is shown in figure 11.

Start → Select4  (Proc  mleft   mright)

Proc  x  y → Cons  x  (Sandwich  Proc  (Mf  x  y) (Mg  y  x) )

Figure 11: The sandwich version of the simplified tidal model

The Sandwich strategy first nomalises x and y, then dispatches the jobs Mf x y and Mg y x for 
parallel evaluation and finally combines the job-results into a new application of Proc.

A transformation into a parallel sandwich version is impossible for the original program of 
figure 5, because the right hand side of the Start-rule is a cyclic graph.
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5 Communication lifting

When the right hand side of a rewrite rule contains several (needed) coarse grain subgraphs, it 
is possible to  obtain a parallel version of this rule using the sandwich function of section 2. 
However, when these coarse grain subgraphs are contained within a cyclic structure the method 
fails, because the arguments of the sandwhich rule have to be independent function applications 
(jobs). The previous section suggests that in some cases a cyclic rule (i.e. the right hand side 
graph contains a cycle) can be transformed into an acyclic rule that produces the same result. 
The acylic rule can be transformed into a parallel version using the sandwich function.

In this section we present the communication lifting transformation that can be used to obtain 
an acyclic rule in case the (cyclic) right hand side graph is a synchronous process network. We 
advocate a programming methodology in which an application program is first developed using 
streams and synchronous processes, because this approaches physical reality and our way of 
thinking about physical problems. Next, the program is transformed by communication lifting. 
In the resulting program coarse grain subexpressions are annotated by the programmer, yielding 
a version of the program that can be efficiently executed on our parallel reduction model that 
only supports coarse grain strict argument parallelism.

Apart  from  making  a  stream  based  program  suitable  for  strict  argument  parallelism, 
communication lifting can also be used to transform a (cyclic) graph of communicating fine-
grain processes into a single application of one (acyclic) coarse-grain process.

In this section we describe communication lifting as a set of transformation rules operating on a 
CLEAN-graph and a CLEAN-rule-set. Throughout the section we use the program of figure 5 
to illustrate the formal description of the transformation rules.

A synchronous process is defined as a function that operates according to one of the following 
models (henceforward the dot is used as an infix notation for Cons):

F  s  (x1 . xr1) ... (xn . xrn)  →  (g  s  x1 ...  xn)  .  F  (f  s  x1 ...  xn)  xr1 .... xrn (S1)

where s is  the state of the process F
(xi . xri) are input streams to F

g is a function that computes the next output element of F

f is a function that computes the next state of F

In (S1) the process F rewrites to a pair, consisting of the application of an output-generating 
function g, followed by a recursive invocation of F. In the recursive call the new state of the 
process is computed by a state-transforming function f. The essential property of a synchronous 
process is that it consumes one element from all the input streams to produce one element of 
the  output  stream.  This does  not  mean that  the  consumed elements are  all needed in the 
computation of the output element. Input elements might be skipped during the execution of a 
synchronous process.
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Also  processes  without  a  state  paramenter,  according  to  model  (S2) are  considered  as 
synchronous processes:

F  (x1 . xr1) ... (xn . xrn)  →  (g  x1 ...  xn)  .  F  xr1 .... xrn (S2)

Although model (S1) and (S2) seem rather restricted, they can be used to describe a large class 
of application programs. In principle all grid-based computations occurring in mathematical 
models, image processing, computer graphics, VLSI design, discrete simulations etc,  can be 
modelled as a collection of synchronous processes. Using communication lifting and sandwich 
transformations,  grain-size  and  parallelism  can  be  controlled  in  a  general,  application 
independent way. As an example we show in section 6 the transformation of the tidal model 
and a simple simulation of digital hardware.

5.1 Application requirements

The application program has to meet four requirements (S3-S6) before communication lifting 
can be applied. These requirements are specified §5.1.1 through §5.1.4.

Communication lifting is applied to a set of rules FN and a possibly cyclic subgraph GR. This 
subgraph is (part of) the right hand side of a rewrite rule.

5.1.1 Syntactical form of FN

The syntactical form of the definitions in FN is defined by (S3). There are m processes in (S3), 
from which n processes are according to model (S1) and the rest according to model (S2)

FN:: Fi  si  (xi1 . xri1)  (xi2 . xri2) ... (S3)

→ (gi  si  xi1  xi2 ...)  .  Fi  (fi  si  xi1  xi2 ...)  xri1  xri2 .. (i = 1.. n)

Fi  (xi1 . xri1)  (xi2 . xri2) ...

→ (gi  xi1  xi2 ...)  .  Fi  xri1  xri2 .. (i = n+1.. m)

In a rule each variable identifier must be different from variable identifiers occurring in other 
rules. This is because the communication lifting transformation performs textual substitutions 
that are global with respect to all definitions in FN. In (S3) uniqueness has been achieved by a 
double subscript for the head- and tail variable of each stream. The first subscript indicates the 
rule number, whereas the second subscript enumerates the stream variables in each rule.

5.1.2 Syntactical form of GR

The interconnections between the processes Fi in FN are specified by GR. This subgraph has to 

consist of labeled applications of the following form:

GR:: ai : Fi  ti  bi1  bi2  ... (i = 1.. n) (S4)

ai : Fi  bi1  bi2  ... (i = n+1.. m)
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The actual stream arguments bij in GR have to be node labels. We require that each stream is 
produced by a labeled application of a synchronous process. Note the use of si and ti for the 
formal, respectively the actual state-argument of  Fi.  Similarly xij and  bij denote the formal, 
respectively the actual stream-arguments of Fi.

In GR a connection exists between two processes Fi and Fj if ∃k | bik = aj. In that case we say 
that  the output  stream of  Fj is connected to  the  kth input  of process  Fi.  The  kth input  of 
process  Fi is  called  unconnected  if  ∀j | bik ≠  aj.  The  values  of  unconnected  inputs  are 

determined by the right hand side graph from which GR has been selected.

example:

As an example we derive the rule set  FN and the graph GR corresponding to the cyclic right 
hand side of the Start-rule in figure 5. In a first step we neglect the syntactical form and merely 
identify FN and GR (see figure 12). In a second step (figure 13) we bring the definitions in the 
required syntactical form.

FN::

F  (x . xr)  (y . yr)  →  Mf  x  y  .  F  xr  yr

G  (x . xr)  (y . yr)  →  Mg  x  y  .  G  xr  yr

GR::

a: Cons  b  c ; c: F  a  d

d: Cons  e  f ; f: G  d  a

Figure 12a: FN and GR of the Start-rule 
of figure 5

Start → Select4  a

b:  mleft

e:  mright

Figure 12b: The remaining part of the 
Start-rule

In GR of figure 12a the labels b and e are unconnected. They are defined in the remaining part 
of  the  Start  rule  (see  figure 12b)  and will become the  external inputs  for  the  transformed 
program. The graph GR does not yet satisfy the constraints outlined above because the two 
streams at label a and b are not produced by a synchronous process. However, we can replace 
the applications of Cons by applications of a Cons-process, which we define as:

Cp  s  (x . xr) → s  .  Cp  x  xr

The definition of Cp complies with the model of a synchronous process and if x is a list it holds 
that Cp s x = Cons s x.

Figure 13 shows the  example program again,  where  Cons has been replaced by the  Cons-
process and where all rule definitions in FN and applications in GR have been subscripted as 
prescribed by (S3) and (S4):
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FN:: Cp1  s1  (x1 . xr1) → s1  .  Cp1  x1  xr1
Cp2  s2  (x2 . xr2) → s2  .  Cp2  x2  xr2
F3  (x3 . xr3)  (y3 . yr3) → Mf  x3  y3  .  F3  xr3  yr3
G4  (x4 . xr4)  (y4 . yr4)→ Mg  x4  y4  .  G4  xr4  yr4

GR:: a1: Cp1  b  c3 ; c3: F3  a1  d2
d2: Cp2  e  f4 ; f4: G4  d2  a1

Figure 13: The simplified tidal model satisfying the constraints for FN and GR

5.1.3 Correspondence between GR and FN

There  should  be  a  one-to-one  correspondence  between  application  nodes  in  GR and  rule 
definitions in FN:

∀i  ∈  1..m | (ai: Fi ....) ∈  GR ⇔ Fi  ∈  FN (S5)

If  GR contains multiple applications of the same function, then copies of the corresponding 
function definition (but with a different subscript) have to be added to FN.

example:

Note that in figure 13 both Cons applications have been replaced by applications of two distinct 
functions  Cp1 and  Cp2,  whereas the definitions for  Cp1 and  Cp2 are  identical (the  Cons-

process). Communication lifting as described in the next sections, requires that all nodes in GR 
are applications of distinct functions in FN. The duplication of function definitions caused by 
this  requirement  has  no  serious  consequences  because  it  is  temporary.  Later  FN will be 
replaced by a single function definition after communication lifting.

5.1.4 One output application node

In  GR one labeled application  (aout : Fout sout bout,1 bout,2 ...) has to  generate the output 

stream of the group of processes described by FN and GR:

∃! out ∈ 1..m | aout : Fout sout bout,1 bout,2 ...  is the output of GR (S6)

The output stream of GR is determined by the right hand side graph of the rule from which GR 
has been selected. If more streams represent the output of the group then an extra process has 
to be added to the group that merges the output streams into one stream.

example:

Figure 12b shows that variable a in the expression (Select4 a) is no longer defined after GR has 
been isolated for  transformation.  Therefore  node  a in  GR (which is node  a1 in figure 13) 
becomes the output stream. Thus, for the example program: Fout = Cp1 and aout = a1.
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5.2 The description of communication lifting

Assuming that a rule set  FN and a cyclic subgraph GR satisfy the constraints outlined in the 
previous section, communication lifting can be defined as a set of syntactical transformations to 
be applied to  FN and GR. The result is that  FN will be replaced by a single acyclic function 
definition  G,  whereas  GR will be replaced  by a  single application of  G.  We describe the 
transformation in six steps T1 to T6 :

5.2.1 The calculation of the communication matrix - step T1

Instead of directly referring to  stream connections in  GR,  the description of communication 
lifting  uses  a  two  dimensional  matrix  C,  which  we  call  the  communication  matrix.  All 
connections in GR are represented by C. An informal definition of C is (referring to  (S3) and 
(S4) ):

C i j  =  { x j k  |  the kth input of Fj  is connected to the output of Fi }

When the kth input (actual argument) of Fj is connected to the output of Fi the matrix element 
Cij contains the head-variable xjk of the kth formal argument of Fj. The matrix element Cij is a 
set because several inputs of Fj may be connected to the output of Fi.

A formal specification for C is given by T1 (referring to (S3) and (S4) ):

-T1 ∀ i, j ∈ 1.. m
∀ k ∈ 1 ..  the number of stream arguments of Fj
iff GR contains two nodes  ai , aj  such that:

ai: Fi  ti  bi1  bi2  ...

aj: Fj  tj  bj1  ...  bj,k-1  ai  bj,k+1  ....

and the definition of  Fj in FN is:

Fj  sj  (xj1 . xrj1)  ...  (xjk . xrjk)  ... → gj  ...  .  Fj  ...

then x j k  ∈  C i j

The specification  (T1) assumes that  Fi and  Fj syntactically comply with model  (S1).  Slight 

variants of (T1)  have to be used when rules of model (S2) are involved.

example:

When (T1) is applied to the example program of figure 13, we have e.g.:  C31 = {x1} because 
of the connection between F3 and Cp1 in GR (connection in bold face):

a1: Cp1  b  c3
c3: F3  a1  d2

and the corresponding definition of Cp1 in FN :

Cp1  s1  (x1 . xr1) → s1  .  Cp1  x1  xr1
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The output of the application c3: F3 a1 d2 is second actual argument of CP1. This argument 
corresponds to  the second formal argument:  (x1 . xr1) in the definition of  Cp1.  Therefore, 
according to (T1), x1 is a member of C31.

Similarly, we can derive the other non-empty elements of C :

C3,1 = {x1}, C4,2 = {x2}, C1,3 = {x3}, C1,4 = {y4}, C2,3 = {y3}, C2,4 = {x4}

5.2.2 The transformation of FN - steps T2 through T4

The communication lifting transformation finds a single rewrite rule  G,  which has the same 
behaviour as the connected set of processes defined by FN and GR. The rewrite rule for G is 
constructed by applying textual transformations to the following rule-pattern:

G  State  Input-streams  →  Output  .  G  New-state  Stream-tails

The skeleton of  G contains five meta-variables:  State,  Input-streams,  Output,  New-state and 
Stream-tails. We use the notation G[E1/E2] to denote that in the rule for G each occurrence of 
E2 is textually replaced by E1.

-T2 State is replaced by a tuple consisting of the formal state arguments of the processes F1 
to  Fn  in  FN  (in  (S3)  the functions  F1 to  Fn are according to  model  (S1) and have 

formal state arguments):

G [  (s1 . s2 . ... . sn)  /  State ]

New-state is replaced by a tuple consisting of the state-transforming expressions of the 
processes F1 to Fn in FN :

G [  (f1  s1  x11  x12  ...) . (f2  s2  x21  x22  ...) .  ...  . (fn  sn  xn1  xn2  ...)  /  New-state  ]

In  FN there is one process  Fout that  produces the output  of the group (see §5.1.4). 
Output is replaced by the output generating expression of process Fout:

G [  gout  sout  xout,1  xout,2  ...  /  Output  ]

-T3 In  both  expressions  for  New-state and  Output,  all  variables  that  are  involved  in 
communication have to be replaced according to the following rule:

∀ i, j ∈ 1.. m  and  ∀ k �  1 .. the number of stream arguments of Fj
if x j k  ∈  C i j
then G [  (gi  si  xi1  xi2  ...)  /  x j k  ]

In other words: each variable in  New-state and  Output that  corresponds to  a stream 
connection  between  process  Fi and  Fj (i.e.  xjk ∈ Cij)  is  replaced  by the  output 
generating expression taken from the definition of process Fi in FN.

The replacements described by T3 have to  applied repeatedly until no more variables 
can be replaced. Common subexpressions that may arise during the substitutions must 
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be  replaced  by a  single  labeled  expression.  In  particular  cyclic connections  would 
otherwise result in an infinite sequence of textual substitutions.

-T4 Finally the meta-variables Input-streams and Stream-tails are to be replaced by a list of 
arguments.  These  lists  contain  the  stream-arguments  in  FN that  correspond  to 
unconnected inputs in GR: The order of the elements in the argument lists has to be the 
same for both replacements.

G [ (argument-list of all (x j k . xr j k) such that x j k ∉ C i j )  /  Input-streams ]

G [ (argument-list of all xr j k such that x j k ∉ C i j )  /  Stream-tails ]

where i, j  �   1.. m  and k  �   1.. number of stream arguments of Fj

example:

To illustrate the rules T2-T4 we construct the function G for the example program of figure 13, 
for which we have already derived the communication matrix C.

T2: In figure 13 only Cp1 and  Cp2 are according to  model  (S1). Thus, referring to  (S3): 

n = 2 and m = 4, which yields the following replacements following (T2):

G [ (s1 . s2)  /  State ]

G [ (x1 . x2)  /  New-state  ]

In §5.1.4 we have derived that Fout = Cp1. The output generating expression of Cp1 is just the 
variable s1, so Output is replaced by s1.

G [ s1  /  Output ]

Applying  the  replacements  of  step  (T2) to  the  skeleton  of  G, we  obtain  the  following 
intermediate result:

G  (s1 .  s2) Input-streams → s1  .  G  (x1 . x2)  Stream-tails

T3: The next step in the transformation  (T3) performs a number of substitutions on the 
variables in the expressions for  Output and  New-state that have been obtained so far. In the 
example only the two variables in New-state have to be replaced. Because x1 ∈ C31 , rule (T3) 
states that x1 has to be replaced by the output generating expression of F3, which is Mf x3 y3. 
Similarly x2 is replaced by Mg x4 y4 :

  G [  (( Mf  x3  y3 ) . ( Mg  x4  y4 ))  /  (x1 . x2)  ]

However,  the  variables  x3,  y3,  x4 and  y4 all  occur  in the  communication  matrix  C.  So 
according to  (T3),  they have to  be replaced again. For example because  x3 ∈ C13 and the 
output  generating expression of  Cp1 is  s1,  we have to  replace  x3 by s1.  Performing similar 
substitutions for y3, x4 and y4, we obtain:

G  (s1 . s2)  Input-streams   →   s1  .  G  (( Mf  s1  s2 ) . ( Mg  s2  s1 ))  Stream-tails
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T4: In the next step of communication lifting  (T4) the meta-variables  Input-streams and 
Stream-tails are replaced. To perform T4 we have to find the set of all formal stream arguments 
(xjk . xrjk) in FN that correspond to unconnected (actual) streams in GR, i.e. xjk ∉ Cij. In case 

of the example program this set turns out to be empty (see section 6 for an example where the 
set is non-empty). Therefore the meta-variables Input-streams and Stream-tails are replaced by 
empty argument lists, which results in the final definition for G:

New-FN:: G  (s1 . s2)   →   s1  .  G  (( Mf  s1  s2 ) . ( Mg  s2  s1 ))

We have introduced the name New-FN to indicate that the definition obtained for G replaces all 
definitions of FN.

5.2.3 The transformation of GR - steps T5 and T6

Communication lifting as described so far, replaces the set of function definitions FN by a single 
definition G. What remains to be done is to transform the subgraph GR into a single application 
of G.

In GR there is exactly one node (aout) that produces the output stream of the subgraph. We 

replace this node by an application that is constructed from the left hand side of the definition 
of G obtained in the previous section. The construction replaces each formal argument of G by 
actual arguments taken from GR, according to the following rules (T5) and (T6):

−Τ5 ∀ k  ∈  1..n :



→−
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⇒   New-GR::   aout: G (s1 ...  tk  ... sn)  ...

−Τ6 (∀ i, j ∈ 1..m  and  ∀ k ∈ 1..number of stream arguments of Fj ) | xjk ∉ Cij :
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⇒   New-GR::   aout: G (...)  ...  bjk  ...

Rule  (T5) describes how in  New-GR each formal state  variable  sk of the definition of  G is 
replaced by an actual state argument tk from GR. The bold face letters help to identify which 

variables are replaced and where to find the actual argument. As before, the numbers n and m in 
the quantisation are defined in (S3). Rule (T6) specifies how each formal input-stream of G is 
replaced by an actual stream argument from GR. Finally, the graph New-GR, consisting of the 
single node aout, replaces the old graph GR.

example:

To complete the transformation of the example program we apply rule T5 to the subgraph GR 
of figure 13. We know already that aout = a1 for the example. This node will be replaced by an 

application of G. To construct the application of G we take the left hand side of its definition: 
G (s1 . s2) and replace the state variables by actual arguments in GR. Applying rule (T5) in two 

steps yields:
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⇒ New-GR:: a1:  G  (b .  e)

Rule  (T6) has  no  effect  in the  example,  because  G has  no  formal input  streams (i.e.  the 
quantisation in (T6) is void). The application that replaces GR therefore remains:

New-GR:: a1:  G  (b . e)

The results obtained for New-FN and New-GR can now be recombined with the remaining part 
of the Start-rule of figure 12b. This yields the final result of communication lifting applied to 
the example program (of figure 5): 

Start → Select4  a

a:  G  (b . e)

b:  mleft 

e:  mright
G  (s1 . s2)   →   s1  .  G  (( Mf  s1  s2 ) . ( Mg  s2  s1 ))

Figure 14: The final result of communication lifting of the example program of figure 5.

5.2.4 Correctness of the communication lifting

Apart from the pairing of the state variables, the names used for these variables and some extra 
labels, the program of figure 14 is identical to the solution presented in figure 10. After a few 
reduction steps the program of figure 14 reduces to the same graph as shown in figure 8 and 
thus computes the same output as the original program of figure 5.

It  is difficult to  prove the correctness of communication lifting, because the contents of the 
communication  matrix  is  in  general  unknown.  For  a  given  program  the  correctness  of 
communication lifting can be proven by showing that  the output  stream of the transformed 
program is identical to the original output stream (there is always a single output stream, see 
§5.1.4). Such a proof can be constructed by induction on the elements of both streams. In the 
example program one has to prove that  a: G (b . e) of figure 14 is identical to  a: Cons b c of 
figure 5.

5.3 Sandwich transformations

A synchronous process G that is the result of communication lifting of a group of processes FN 
and a subgraph GR, can be mapped onto the job-based parallel reduction model. The output-
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generating expression and the state-transforming expression of G are well suited for sandwich 
annotation. Both expressions only contain applications of the functions fi and gi of the original 
processes in  FN.  In principle all needed applications of  fi and  gi  are possible candidates to 

become part of a sandwich expression. The programmer has to select the coarse grain needed 
expressions  and  isolate  them  by  a  transformation.  To  give  an  impression  of  such 
transformations we use the function G of figure 15. This is an example of a function generated 
by communication lifting that is simple, but sufficiently complex to illustrate relevant aspects of 
the sandwich transformation and the retention of results (the latter subject is discussed in the 
next subsection):

G  (s1 . s2) → a  .  G  ((f1  s1  b) . (f2  s2  a))

a: g1  s1
b: g2  s2

Figure 15: A typical function generated by communication lifting

First we show how the sandwich rule has to be incorporated. Depending on the grain size of 
the various calculations there are three possible transformations:

G  (s1 . s2) → a  .  G  (Sandwich  Cons  (f1  s1  b)   (f2  s2  a)) (SW1)

a:  Head  c

b:  Tail  c
c:  Sandwich  Cons  (g1  s1)  (g2  s2)

G  (s1 . s2) → a  .  G  ((f1  s1  b) . (f2  s2  a)) (SW2)

a:  Head  c

b:  Tail  c
c:  Sandwich  Cons  (g1  s1)  (g2  s2)

G  (s1 . s2) → a  .  G  (Sandwich  Cons  (f1  s1  b)   (f2  s2  a)) (SW3)

a:  g1  s1
b:  g2  s2

The first transformation is appropriate when the grain size of both the output-  and the state 
calculations is sufficiently large to justify parallel evaluation. The sandwich annotation always 
requires a main function operating on the received job-results. We use the Cons constructor for 
this purpose. This means that if one of the paired (Cons-ed) results is required, it has to  be 
selected with the  Head- or  Tail-function. In  (SW1) this occurs at node  a and  b to select the 
results of  (g1 s1) and  (g2 s2).  Unpairing the result of the other sandwich expression is not 

necessary, because a Cons-ed pair happens to be needed as the argument to G.

If the computation of the next state does not outweigh the communication cost involved in the 
transmission  of  the  jobs  (f1 s1  b) and  (f2 s2  a),  these  functions  need  to  be  reduced 

sequentially, as is illustrated by transformation (SW2).



chap VII Parallel Graph Reduction for Synchronous Process networks 159

The third transformation applies when most of the work is involved in evaluating the next state. 
This is generally the case for loosely coupled processes, like the tidal model and the hardware 
simulation of section 6.

In most of these applications the state is represented by a large data structure. The parallel jobs 
as they are annotated in  (SW3) contain the states  s1 and  s2.  Each time when both jobs are 

dispatched for parallel evaluation, all data representing the states is also transmitted. This may 
cause an unacceptable amount of communication.

Inspired by the execution pattern of (SW3) we have designed an extra annotation that can be 
used in conjunction with the Sandwich annotation, to avoid the repeated transmission of states. 
The annotation has been called the own-annotation because it causes processors to retain their 
(own) result. The own-annotation is described in detail in [VRE88]. Here we only give a short 
explanation and show how program  (SW3) has to  be transformed again, to  profit from the 
retention of function results, caused by the own-annotation.

5.4 The retention of results

Figure 16 gives an impression of the effect  of the own-annotation,  implemented on a local 
memory architecture consisting of two  processors.  Suppose that  during the evaluation of a 
program in processor-1, a sandwich expression (not shown) causes the application (f x) to be 
transmitted to processor-2, where it is rewritten to own x (figure 16a).

 

own 

f x →  own  x 

x 

f 

x 

"x" 

x 

g "x" 

  ..f   x  ..  ..g "x".. 

g 

result of  
(g  x) 

a b c d 

Processor 1 

Processor 2 

.."x".. 

x 

Figure 16: Retention of x using the own annotation

Reduction of the own-application in processor-2 results in the retention of the graph x, whereas 
a  virtual  value  "x" is  returned  to  processor-1  (figure 16b).  This virtual  value  can  not  be 
considered as a regular pointer to x. Dereferencing "x" in processor 1 results in a fatal error. A 
virtual value may only be used in another sandwich expression. Suppose that an application 
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(g "x") is part of a subsequent sandwich expression in processor-1 (again not shown) and as a 
consequence has to be transmitted to a remote processor. The application (g "x") will then be 
sent to the same processor as where x is retained. Upon arrival in processor-2, the virtual value 
"x" is replaced by the retained x (figure 16c). If no further applications of own occur the result 
of (g x) is normally returned to processor-1 (figure 16d).

Considering the definition of G in (SW3), it seems impossible to retain the state information s1 
and s2  by the use of the own-annotation. The state has to be returned to G on each recursion 
to  compute  (g1 s1) and  (g2 s2).  However,  in  many  applications  of  type  (SW3) these 
computations only yield small results compared to the size of their input arguments s1 and s2. 
Instead of returning the states s1 and s2, it seems more appropriate to compute (g1 s1) at the 
processor retaining s1, and to  compute  (g2 s2) at the processor retaining s2. Then, only the 

relatively small results of these applications have to be returned.

The following transformation of  (SW3), which we call the  own-transformation, takes care of 
computing (g1 s1) and (g2 s2) in the appropriate processor:

G  ((s1 . a) . (s2 . b)) (SW4)

→ a  .  G  (Sandwich  Cons  (f1'  s1  b)   (f2'  s2  a))

f1'  s  x → (Own s1') . g1  s1'

s1':  f1  s  x

f2'  s  x → (Own s2') . g2  s2'

s2':  f2  s  x

The state tuple of (SW3) has been extended in (SW4) with the result of computing (g1 s1) and 
(g2 s2). These computations are now part of the functions f1' and f2'. The latter two functions 
still compute the next state,  using the old  f1 and  f2,  but the state  is retained in the remote 
processor by the annotation  Own. Retention of the states is possible, because s1 and  s2  are 

indeed nowhere used in the definition of G in (SW4). They are merely passed as arguments to 
the applications of f1' and f2'. Thus if the implementation of own returns a virtual value, this 

value will never be dereferenced in G.

6 Using communication lifting

The  communication  lifting method  for  synchronous  processes  is  sufficiently general  to  be 
implemented as an automatic development tool.  Such a tool  could take the definition of a 
synchronous process network and transform it into a single synchronous process. The sandwich 
transformations, however, cannot be easily automated, as they require knowledge of the grain-
size of computations.
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To  demonstrate  the  proposed  transformations  as  a  programming method  for  the  manual 
construction of parallel programs, we will apply them to the tidal model introduced in section 
4.1 and to a logic-level simulation of digital hardware.

6.1 Transformation of the tidal model

To present a more complex example of communication lifting we will transform the parallel 
tidal model introduced in section 4.1, to obtain a mapping on the job-based reduction model. 
Figure 17 illustrates the communication structure  (GR)  of the non-simplified version of the 
program and introduces short unique names for the individual processes to obtain a reasonably 
compact notation while applying the rules T1-T6.

 

F1   s1 

F4 

F7 

F2    s2 

F3 F5 

F6 F8 

F9 

Figure 17: The structure of the tidal model

The definitions in FN and the graph GR associated with figure 17 are presented in figure 18: 

FN:: F1  s1  (x1 . xr1) → s1 .  F1  x1  xr1
F2  s2  (x2 . xr2) → s2 . F2  x2  xr2
F3  (x3 . xr3) → (g3  x3) . F3  xr3
F4  (x4 . xr4)  (y4 . yr4) → (g4  x4  y4) . F4  xr4  yr4
F5  (x5 . xr5) → (g5  x5) . F5  xr5
F6  (x6 . xr6) → (g6  x6) . F6  xr6
F7  (x7 . xr7) → (g7  x7) . F7  xr7
F8  (x8 . xr8)  (y8 . yr8) → (g8  x8  y8) . F8  xr8  yr8
F9  (x9 . xr9)  (y9 . yr9) → (g9  x9  y9) . F9  xr9  yr9

g9  x9  y9 → x9 . y9

GR:: a1: F1  mleft  a7 a4: F4  a1  a3 a7: F7  a4
a2: F2  mright  a8 a5: F5  a2 a8: F8  a5  a6
a3: F3  a2 a6: F6  a4 a9: F9  a1  a2

Figure 18: FN and GR of the tidal model
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The rules F3 to F8  specify the update calculations that are applied to the physical quantities. A 
precise description of g3 to  g8 can be found in [VRE87]. The functions receive and generate 

streams of  matrices,  without  retaining any state  information.  The  only two  functions  that 
contain a state are F1 and F2. They are Cons-processes as discussed in section 5.1.  In GR the 
functions F1 and F2 are applied to their initial matrices: mleft respectively mright. Process F9 

merges the output  of the left-hand side with that of the right-hand side into a single output 
stream. The node a9 has to be considered as the output stream of GR (i.e. aout = a9).

We will first  lift  the  processes  of  figure 18  into  one  single  synchronous  process.  Next  a 
transformation of type  (SW3) yields a parallel program consisting of two coarse grain jobs. 
Application of the communication lifting steps T1-T6 proceeds as follows:

T1: The communication matrix corresponding to  GR in figure 18 contains the following 
non-empty elements:

C14  =  { x4 }, C19  =  { x9 }, C23  =  { x3 }, C25  =  { x5 }, C29  =  { y9 }, C34  =  { y4 },

C46  =  { x6 }, C47  =  { x7 }, C58  =  { x8 }, C68  =  { y8 }, C71  =  { x1 }, C82  =  { x2 }. 

T2: From figure 18 it follows that n = 2, (f1 s1 x11 x12 ...) = x1,  (f2 s2 x21 x22 ...) = x2, and 
we have assumed thatFout = F9. Therefore (T2) yields the following replacements:

G [ (s1 . s2)  /  State ]

G [  (x1 . x2)  /  New-state ]

G [  (g9  x9  y9)  /  Output ]

T3: The contents of communication matrix C specifies the following replacements that have 
to be applied repeatedly to the expressions for Output and New-state:

x1 → g7  x7 x2 → g8  x8  y8 x3 → s2
x4 → s1 x5 → s2 x6 → g4  x4 
y4
x7 → g4  x4  y4 x8 → g5  x5 x9 → s1
y4 → g3  x3 y8 → g6  x6 y9 → s2

During the replacements in the expression for New-state a common sub-expression arises and 
shared using label a:

New-state → (x1 . x2)

→  (g7  x7) . (g8  x8  y8)

→  (g7  a) . (g8  (g5  s2) (g6  a))

a: (g4  x4  y4) →  a:  (g4  s1  (g3  x3))

→  a:  (g4  s1  (g3  s2))

In the last step of rewriting Output the definition of g9 is used:
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Output → (g9  x9  y9)

→  (g9  s1  s2)

→  (s1 . s2)

T4: Because  all variables  xik of  the  processes  Fi are  contained in matrix  C,  the  meta-

variables Input-streams and Stream-tails are replaced by the empty list of arguments, resulting 
in the following single rewrite rule for the tidal model:

G  (s1 . s2) →  (s1 . s2) .  G  ((g7  a)  .  (g8  (g5  s2)  (g6  a)))

      a:  (g4  s1  (g3  s2))

T5 and T6: Replacing the formal arguments  s1 and  s2  of  G by their corresponding actual 

arguments mleft and mright in GR yields the single application node that replaces GR:

a9: G  mleft  mright

The application at  a9 specifies a stream of matrix pairs that  represent the state  of the tidal 

model at successive time steps. A main expression, steering the program, may select a subset of 
these pairs to be printed.

From  the  tidal  model  it  appears  that  the  functions  g4,  g5,  g7 and  g8 perform a  lot  of 

computations. A transformation of type (SW3) can be applied to G to generate parallel jobs for 
the applications of g7 and g8:

G  (s1 . s2) →  (s1 . s2) .  (G  c)

      c:  Sandwich  Cons  (g7  a)  (g8  (g5  s2)  (g6  a))

      a:  (g4  s1  (g3  s2))

The  Sandwich strategy will first  sequentially reduce the arguments  a,  (g5 s2) and  (g6 a) to 
normal form, before dispatching the jobs (g7 ...) and  (g8 ...). In this sequential evaluation we 

observe again the presence of two independent coarse grains of computation: the application of 
g4 and  g5. The possibility to  reduce these two applications in parallel too,  leads to  the final 

parallel version of the tidal model:

G  (s1 . s2) →  (s1 . s2) .  (G  c)

      a:  Head  b
      b:  Sandwich  Cons  (g4  s1  (g3  s2))  (g5  s2)

      c:  Sandwich  Cons  (g7  a)  (g8  (Tail  b)  (g6  a))

Still a transformation of type (SW4) has to be applied in order to profit from the retention of the 
large state matrices (s1 and s2) in their respective remote processors. This transformation has 

been elaborated in [VRE88] where the version of  G derived here,  is considered as a given 
source program to be transformed. A performance figure of the transformed parallel tidal model 
on our experimental machine is presented in [HAR88].
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6.2 Transformation of a digital hardware simulation

The simplified tidal model of  figure 4  consists  of two  coarse  grain synchronous  processes 
without state information. We now show the transformation of a program where all processes 
contain state information and represent fine grain calculations. This program simulates digital 
hardware, using synchronous process definitions for the elementary components and "glueing" 
those components together with streams. Starting with the specification of a nand-gate as a 
synchronous process, a two-stage edge-triggered flipflop (D-type) is constructed. Assuming the 
flipflop has a sufficiently coarse grain size, we transform the stream definition of a shift-register 
based on these flipflops into a job-based parallel version.
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Figure 19: A stream definition of a D-type flipflop

The definition of a 2-input nand-gate with a unit time delay as a synchronous process, is as 
follows:

N  s  (x . xr)  (y . yr) →  s . N  (f  x  y)  xr  yr

f  x  y →  Not   (And  x  y)

The state of the nand-gate implements the delay of such a digital circuit. The definition of  N 
shows that the application of the nand-function on the input elements x and y is first transferred 
into the internal state, to be delivered as an output element on the next recursive rewrite of N. 
A hardware  description of a  D-type  flipflop,  with two  buffers  B1,  B2 and ten  nand-gates 
numbered  N3 to  N12,   can  be  translated  into  a  stream-based  definition  of  synchronous 

processes (see figure 19).

The input stream elements are called d and c, according to the meaning of these streams as data 
and clock. The two buffers B1 and B2 are both the identity process on streams with one unit 

time-delay. They have no other function than to provide the power to drive multiple internal 
circuits without presenting a multiple load to the outside world.

Figure 20 shows the function definitions (FN) and the interconnection graph (GR) of figure 19. 
Subscripts  are  used  to  obtain unique names for  all variables.  Note  that  in contrast  to  the 
previous examples some of the actual arguments in GR are constants. They specify the initial 
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states of the circuits when power is switched on. These initial states can be arbitrary chosen 
from {0,1} denoting "false", respectively "true". (however, the program only works correctly if 
s7 = Not(s6) and  s12 = Not(s11) because  the  flipflop  has  no  external  "clear"  input).  The 
illustration of figure 19 suggests that node a11 represents the output stream of GR. The actual 

input streams to GR are called "data" and "clock".

FN:: B1  s1  (x1 . xr1) → s1 . B1  x1  xr1
B2  s2  (x2 . xr2) → s2 . B2  x2  xr2
Ni  si  (xi . xri)  (yi . yri) → si . Ni  (f  xi  yi)  xri  yri i = 3,4, .. 12

GR:: a1: B1  0  data a5: N5  0  a3  a2 a9:   N9  0  a6  a8
a2: B2  0  clock a6: N6  0  a4  a7 a10: N10  0  a8  a7
a3: N3  0  a1  a1 a7: N7  1  a6  a5 a11: N11  0  a9  a12
a4: N4  0  a1  a2 a8: N8  0  a2  a2 a12: N12  1  a11  a10

Figure 20: FN and GR of the D-type flipflop

Transformation of the twelve gates into one process Fp according to the communication lifting 
rules T1-T6 runs as follows:

T1: The  communication  matrix  corresponding to  figure 20  contains  the  following non-
empty sets:

C1,3 = { x3, y3 } C3,5 = { x5 } C7,6 = { y6 } C10,12 = { y12 }

C1,4 = { x4 } C4,6 = { x6 } C7,10 = { y10 } C11,12 = { x12 }

C2,4 = { y4 } C5,7 = { y7 } C8,9 = { y9 } C12,11 = { y11 }

C2,5 = { y5 } C6,7 = { x7 } C8,10 = { x10 }

C2,8 = { x8, y8 } C6,9 = { x9 } C9,11 = { x11 }

T2: From figure 20 it follows that  n = 12, which yields the following replacement for the 
meta-variable State:

Fp [ (s1 . s2 . .... s12)  /  State  ]

Composing all state expressions of B1, B2, N3, - N12 into a tuple yields:

Fp [  x1 . x2 . (f  x3  y3) .  (f  x4  y4) . ... . (f  x12  y12)  /  New-state  ]

We  have  assumed  that  Fout = N11.  In  figure  20  the  corresponding  output  generating 
expression is just the variable s11, thus:

Fp [  s11  /  Output  ]

T3: The communication matrix  C yields the following replacements to  be applied to  the 
expressions for Output and New-state:
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New-state [ s1 / x3 s1 / y3 s1 / x4 s2 / y4 s2 / y5 s2 / x8
s2 / y8 s3 / x5 s4 / x6 s5 / y7 s6 / x7 s6 / x9
s7 / y6 s7 / y10 s8 / y9 s8 / x10 s9 / x11 s10 / y12
s11 / x12 s12 / y11  ]

which results in the final replacement for New-state:

  Fp [  x1 . x2 . (f  s1  s1) . (f  s1  s2) . (f  s3  s2) . (f  s4  s7) . (f  s6  s5) . (f  s2  s2) .

(f  s6  s8) . (f  s8  s7) . (f  s9  s12) . (f  s11  s10)  /  New-state  ]

T4: The stream variables of FN not contained in the communication matrix are: x1 and x2. 

The argument lists of Fp thus become:

Fp [  (x1 . xr1)  (x2 . xr2)  /  Input-streams  ]

Fp [  xr1  xr2  /  Stream-tails  ]

Replacing the meta-variables in the skeleton of Fp according to the results obtained in T1-T4, 
yields a synchronous process for the flip-flop of figure 20:

Fp  (s1 . s2 . .... s12)  (x1 . xr1)  (x2 . xr2)

→  s11 . Fp  a  xr1  xr2
      a:   x1 . x2 . (f  s1  s1) . (f  s1  s2) . (f  s3  s2) . (f  s4  s7) . (f  s6  s5) .

(f  s2  s2) . (f  s6  s8) . (f  s8  s7) . (f  s9  s12) . (f  s11  s10)

Figure 21: The lifted process for a D-type fliplop

T5, T6: To derive the single application that is going to replace GR we have to transform 
the left hand side of the definition of  Fp of figure 21. The formal state variables  si and the 
formal  stream  arguments  (x1 . xr1),  (x2 . xr2) are  replaced  by  the  corresponding  actual 

arguments in GR, yielding: 

a11:  Fp  (0 . 0. 0. 0. 0. 0. 1. 0. 0. 0. 0. 1)  data  clock

The preceding communication lifting of several nand-gates  into one process definition of a 
flipflop is an example of how to enlarge the grain size of many fine grain processes into one 
coarse  grain  synchronous  process.  The  coarse  grain  process  can  now  be  used  in  other 
groupings, where parallel execution is required. We will illustrate this by designing a parallel 
shift  register  based  on  the  previously  derived  definition  of  Fp and  performing  another 
communication lifting on a group of flipflops.

To use the flipflop in the construction of a shift register, we introduce the name ff for the state-
transforming function of Fp and the name gf for the output-generating function of Fp:

ff  (s1 . s2 . .... s12)  x1  x2 → x1 . x2 . (f  s1  s1) . (f  s1  s2) . (f  s3  s2) . 

(f  s4  s7) . (f  s6  s5) . (f  s2  s2) . (f  s6  s8) . 

(f  s8  s7) . (f  s9  s12) . (f  s11  s10)
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gf  (s1 . s2 . .... s12) → s11

The stream based definition of for example a two bit shift register is obtained by concatenating 
two flipflops, sharing the same buffered clock and the same initial state:

FN:: B1  s1  (x1 . xr1) → s1  .  B  x1  xr1
Fp2  s2 (x2 . xr2)  (y2 . yr2) → (gf  s2) . Fp2  (ff  s2  x2  y2)  xr2  yr

Fp3  s3 (x3 . xr3)  (y3 . yr3) → (gf  s3) . Fp3  (ff  s3  x3  y3)  xr3  yr3

GR:: a1: B1  0  clock

a2: Fp2  state  data  a1
a3: Fp3  state  a2  a1

 

The output stream of GR is produced by node a1 and the unconnected inputs are  state,  data 

and  clock.  The communication lifting rules T1-T6 can be applied again to  result in a lifted 
process Sr that replaces FN:

Sr  (s1 . s2 . s3)  (x1 . xr1)  (x2 . xr2)

→  (gf  s3) . Sr  (x1 . (ff  s2  x2  s1)  . (ff  s3  (gf  s2)  s1))  xr1  xr2

and an application that replaces GR:

a1: Sr  (0 . state . state)  clock  data

Subsequently Sr can be transformed into a job-based version following (SW3):

Sr  (s1 . s2 . s3)  (x1 . xr1)  (x2 . xr2)

→  (gf  s3) . Sr   (x1 . a)  xr1  xr2
      a:  Sandwich  Cons  (ff  s2  x2  s1)  (ff  s3  (gf  s2)  s1)

To retain the considerable amount of state information of a flip-flop in the processor to which 
the flip-flop will be allocated, a transformation of type (SW4) may be applied:

Sr  (s1 . (s2 . gfs2) . (s3 . gfs3))  (x1 . xr1)  (x2 . xr2)

→  gfs3 . Sr   (x1 . a)  xr1  xr2
      a:  Sandwich  Cons  (ff'  s2  x2  s1)  (ff'  s3  gfs2  s1)

ff'  s  x  y →  (Own  a) . (gf  a)

      a:  ff  s  x  y

The sandwich annotation distributes the computation of the state-transforming functions ff' of 
the flip-flops. The results of these computations consist  of a new state  and a new output-
element for each flip-flop. The new state  is retained in the remote processors,  whereas the 
output-elements are actually returned to the shift-register process.
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7 Conclusion

The job-based model for parallel reduction mediates between pure graph reduction and string 
reduction.  The model allows efficient parallel reduction of certain application programs on 
architectures without shared memory. In our approach parallel jobs have to be annotated by the 
programmer. However, application programs written as process networks, containing streams 
and cyclic structures, do not fit directly in this model. Three transformations are presented, 
called communication lifting, sandwich- and own-transformation. Together they allow a subset 
of applications written as synchronous process networks to be mapped onto the job-model

Streams and cyclic structures are frequently present in functional programs that model process 
networks.  Using  a  linear  notation  for  graph  rewriting,  the  reduction  of  such  a  program 
demonstrates that cyclic structures disappear from the graph in an early stage. An equivalent 
non-cyclic program is shown to yield the same computational structure.

Using the example as a guide-line, a general method is presented that allows the transformation 
of  a  (cyclic)  network  of  processes  into  one non-cyclic  process.  The  method,  called 
communication lifting,  is applicable to  a  network  of processes that  behave according to  a 
model,  in which communication  between  processes  occurs  synchronously.  For  application 
programs written according to  this model, a set  of formal transformation rules is presented 
describing communication lifting.

For a synchronous process two other transformations are informally presented, the sandwich- 
and own-transformation. These allow an efficient mapping of the process onto our job-based 
parallel reduction model. The job model has to be extended by an extra annotation that causes 
the retention of graphs in remote processors.

For two application programs it is shown how to construct and annotate coarse grain parallel 
jobs, using the presented  transformations.  One application program is a  tidal model of the 
North Sea, consisting of coarse grain communicating processes. The other application shows 
how to construct a simple parallel simulation of digital hardware, from fine grain processes.
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Appendix: Summary of communication lifting

A.1 Models of a synchronous process

F  s  (x1 . xr1) ... (xn . xrn)  →  (g  s  x1 ...  xn)  .  F  (f  s  x1 ...  xn)  xr1 .... xrn (S1)

where s is  the state of the process F
(xi . xri) are input streams to F

g is a function that computes the next output element of F

f is a function that computes the next state of F

F  (x1 . xr1) ... (xn . xrn)  →  (g  x1 ...  xn)  .  F  xr1 .... xrn (S2)

A.2 Application requirements

The  application  to  be  transformed  is  a  rule  set  FN and  a  graph  GR with  the  following 
restrictions:

FN:: Fi  si  (xi1 . xri1)  (xi2 . xri2) ... (S3)

→ (gi  si  xi1  xi2 ...)  .  Fi  (fi  si  xi1  xi2 ...)  xri1  xri2 .. (i = 1.. n)

Fi  (xi1 . xri1)  (xi2 . xri2) ...

→ (gi  xi1  xi2 ...)  .  Fi  xri1  xri2 .. (i = n+1.. m)

GR:: ai : Fi  ti  bi1  bi2  ... (i = 1.. n) (S4)

ai : Fi  bi1  bi2  ... (i = n+1.. m)

∀i  ∈  1..m | (ai: Fi ....) ∈  GR � Fi  ∈  FN (S5)

∃! out ∈ 1..m | aout : Fout sout bout,1 bout,2 ...  is the output of GR (S6)

A.3 The description of communication lifting

Model rule:

New-FN:: G  State  Input-streams  →  Output  .  G  New-state  Stream-tails

Transformation  of  FN and  GR with  the  model  rule  in  six  steps  yielding  NEW-FN and 
NEW-GR:
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∀ i, j ∈ 1.. m (T1)
∀ k ∈ 1 ..  the number of stream arguments of Fj
iff GR contains two nodes  ai , aj  such that:

ai: Fi  ti  bi1  bi2  ...

aj: Fj  tj  bj1  ...  bj,k-1  ai  bj,k+1  ....

and the definition of  Fj in FN is:

Fj  sj  (xj1 . xrj1)  ...  (xjk . xrjk)  ... → gj  ...  .  Fj  ...

then x j k  ∈  C i j

G [  (s1 . s2 . ... . sn)  /  State ] (T2)

G [  (f1  s1  x11  x12  ...) . (f2  s2  x21  x22  ...) .  ...  . (fn  sn  xn1  xn2  ...)  /  New-state  ]

G [  gout  sout  xout,1  xout,2  ...  /  Output  ]

∀ i, j ∈ 1.. m  and  ∀ k ∈ 1 .. the number of stream arguments of Fj (T3)

if x j k  ∈  C i j
then G [  (gi  si  xi1  xi2  ...)  /  x j k  ]

G [ (argument-list of all (x j k . xr j k) such that x j k ∉ C i j )  /  Input-streams ] (T4)

G [ (argument-list of all xr j k such that x j k ∉ C i j )  /  Stream-tails ]

where i, j ∈ 1.. m  and k ∈ 1.. number of stream arguments of Fj

∀ k ∈ 1..n : (T5)
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⇒   New-GR::   aout: G (s1 ...  tk  ... sn)  ...

(∀ i, j ∈ 1..m  and  ∀ k ∈ 1..number of stream arguments of Fj ) | xjk ∉ Cij : (T6)
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⇒   New-GR::   aout: G (...)  ...  bjk  ...

A.4 Sandwich and own transformations

Model program:

G  (s1 . s2) → a  .  G  ((f1  s1  b) . (f2  s2  a))

a: g1  s1
b: g2  s2

Transformation examples SW1-SW4 of the model program:

G  (s1 . s2) → a  .  G  (Sandwich  Cons  (f1  s1  b)   (f2  s2  a)) (SW1)

a:  Head  c

b:  Tail  c
c:  Sandwich  Cons  (g1  s1)  (g2  s2)
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G  (s1 . s2) → a  .  G  ((f1  s1  b) . (f2  s2  a)) (SW2)

a:  Head  c

b:  Tail  c
c:  Sandwich  Cons  (g1  s1)  (g2  s2)

G  (s1 . s2) → a  .  G  (Sandwich  Cons  (f1  s1  b)   (f2  s2  a)) (SW3)

a:  g1  s1
b:  g2  s2

G  ((s1 . a) . (s2 . b)) (SW4)

→ a  .  G  (Sandwich  Cons  (f1'  s1  b)   (f2'  s2  a))

f1'  s  x → (Own s1') . g1  s1'

s1':  f1  s  x

f2'  s  x → (Own s2') . g2  s2'

s2':  f2  s  x
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Abstract

An extensible machine architecture is devised to efficiently support a parallel reduction model of com-

putation. The organisation of the machine is designed to match the behaviour of the application pro-

grams. A pilot implementation of the architecture is used to obtain an execution profile of the various

applications. These profiles are used with a performance model to calculate optimal schedules of the

applications. Theresulting speedup figures give an upper bound for the performance gain that may be

attained on a full implementation of the architecture. The most important result is that each application

allows for a processor utilisation of over 50% to be attained on our parallel architecture.

Ke y words: localmemory architecture multiple processor system
optimal scheduling parallel graph reduction performance measurement

1. Intr oduction

With today’s microprocessor technology it is possible to connect large numbers of powerful

processors via a high speed communication network. Eachprocessor may be equipped with a

large store, to which it has high speed access. Storage modules can be equipped with few

access ports. Arbitration logic makes shared access possible, with the same high speed, unless

a storage cell is accessed from more than one port at exactly the same time. It is difficult to

provide a large number of processors with high speed access to a common store. A globally

shared component tends to reduce fault tolerance, extensibility and potential parallelism of a

system. Considering this, we set out to develop a model of computation based on reduction,

† This work is supported by the Dutch Ministry of Science and Education, dienst Wetenschapsbeleid
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that can be implemented efficiently on an architecture without a common store. In part I of this

paper1 it was shown, that based on this model of computation, interesting application pro-

grams, such as Wang’s algorithm2 to solve a sparse system of linear equations, can be trans-

formed into functionally equivalent versions that benefit from parallel evaluation on such an

architecture.

The model of computation is based on the concept of a job. This is a closed, needed redex that

can be evaluated in parallel to other jobs at a cost that can be kept low for two reasons. Firstly,

during the evaluation of a job, there is no need for communication since it is closed. Secondly,

the communication costs incurred in setting up the job on a separate processor and returning

its results can be kept low enough to make parallel evaluation beneficial. This is achieved by

transforming programs without this property into functionally equivalent ones with this prop-

erty. A possible disadvantage of this scheme is, that parallel evaluation of closed expressions

makes it necessary to duplicate shared subexpressions. To avoid the duplication of work, such

subexpressions must be in normal form. A function is available to normalise shared subexpres-

sions before the generation of parallel jobs.

Jobs arise when a special function “sandwich” is encountered during the evaluation of an

application. It gives the arguments of the function the status of a job and schedules their paral-

lel evaluation. The application programmer has to ensure, that the requirements for jobs are

indeed satisfied. Special precautions may have to be taken to balance communication and

reduction cost. For instance the recursive subdivision of unsorted lists in the quick sort algo-

rithm must be stopped when the lists become too small. A threshold mechanism achieves this

form of dynamic grain size control. Applications that lend themselves well to be written as

“sandwich” programs are divide-and-conquer algorithms.

In this part of our paper we describe the machine model in more detail and present perfor-

mance figures with respect to the application programs and a pilot implementation of the

architecture.

2. Machinemodel

The architecture of the parallel reduction machine that we use to support the sandwich strategy

consists of a network of processing elements, each with a fair amount of local store. We do not

make assumptions about the topology. Until now we hav eused a string of processing elements

and experiments with a regular mesh structure are planned. The use of shared store as a com-

munication device allows for some interesting optimisations to be implemented.

2.1. Storage

The storage space of a processing element is the set of storage cells that can be accessed by

elementary operations, such as “dereference pointer” or “allocate cell”. This is called local

access. Althoughin general communication facilities are necessary to access the store of an
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arbitrary processing element (non-local access), the storage spaces of adjacent processing ele-

ments may partly overlap. Hence some transactions may bypass the communication facilities,

because both parties have local access to the same store. When individual storage cells are

addressed, non-local access is always much slower than local access. Most communication

systems transfer large groups of elementary data items as a single packet to amortise the over-

head incurred in setting up a transaction.

The classical message passing paradigm does not take advantage of overlapping storage. This

is mainly due to the call by value semantics of the message passing primitives, which causes a

message to be copied from source to destination. Yet another copy of the message has to be

made if during transmission the destination storage area is still unknown. This unfortunate sit-

uation arises because data transfer is usually combined with process synchronisation and it

may well occur that the recipient of the message is not yet ready to accept it. One solution is to

delay the transmitter until the recipient is prepared to communicate, but this is unacceptable in

those areas where insufficient parallelism is available to cover the waiting periods. Regular

message passing causes at least two copies to be made of the transported message. Not even a

single copy is necessary if both parties in communication have access to the same local store

and synchronisation is separated from communication. The latter scheme is used in our pro-

posal to transport jobs and results.

2.2. Processing

An alternative name for string reduction is tree reduction. This term blends well with the “job”

structure that is generated by the sandwich strategy. The root of the tree is formed by the main

job. Reduction of a sandwich expression causes new jobs to be created. The representation of

a job “flows” along the edge that connects the job to its parent. On termination, a job commu-

nicates the result to its parent along the same edge but in opposite direction. Communication

between two jobs is only possible, when they are parent and child. Consider as an example the

job structure shown in figure (1) that arises during the execution of Wang’s partitioning algo-

rithm. The horizontal solid lines represent sequential calculations (measured in reduction

steps). The vertical solid lines represent the size of the jobs (measured as a number of nodes)

that are transmitted to be reduced in parallel. The computation starts off sequentially (185

steps) until the first two subjobs are created. One of them causes two new jobs to be started

until we arrive at the situation where five jobs are evaluated in parallel for a relatively long

time. In order not to clutter up the diagram the jobs and results are shown as separate trees.

The flow of results is drawn as dashed lines that mirror the flow of jobs. In most applications

that we have run it takes little time to merge the results.Wang’s algorithm consists of two par-

allel phases and a sequential phase: after the first elimination phase a long sequential calcula-

tion is necessary (7411 steps) before the second elimination phase can be started.
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Figure 1 : The job and result trees generated by Wang’s algorithm (not drawn to scale)

The processing elements in the parallel machine architecture must be arranged in such a way

that a dynamically generated job-tree as described above can be mapped on the physical topol-

ogy. Each individual processing element must be capable of supporting more than one reducer

(process) and a reducer is involved with a single job until the job terminates. Within a process-

ing element a form of local scheduling is necessary to allow for a reducer to wait for comple-

tion of the children of the job it is reducing. The processing element is then free to take up

another assignment. By definition the normal form of a job is needed in some context, hence

the local scheduling need not be concerned with preemption and rescheduling of active jobs.

If the number of jobs does not exceed the number of processing elements, each processing ele-

ment could be allocated to a job (via a reducer). In that case the utilisation of resources is not

optimal. Therefore the number of jobs should be larger than the number of processing ele-

ments. Indiscriminateallocation of jobs to reducers may not yield good results. For instance if

all leaf nodes in the job-tree end up in a single processing element, the overall performance of

the system will be worse than that of a sequential machine.

2.2.1. TheConductor

Control is necessary to spread the jobs over the available processing elements and to make

sure that the storage requirements of the jobs do not exceed the machine capacity. Both activi-

ties require global information. To achieve this, we have decided to allocate this task to a dedi-

cated processing element. We call this centralised scheduler the conductor to stress that it has

complete control over the “orchestra” of reducers, but that once a reducer has been allocated a

job, it enters a relatively long period of autonomy. To be responsive, the conductor must have a

“direct” connection to each reducer. In large systems it will be necessary to implement the

conductor in a distributed fashion. Each single conductor controls a section of the system, but



chap VIII Parallel graph reduction for divide-and-conquer applications† 181

by exchange of information between conductors, global control of the system is still effectu-

ated. Our expectation is that this organisation does not introduce a bottleneck, since the pur-

pose of creating jobs was to produce large grains of parallel computation. If the jobs are too

small to sustain the extra cost incurred in centralised control, the tools that were developed to

regulate the grain size were applied inappropriately.

The task of the conductor is to balance the load in an environment with resources that are

scarce. In general there are many ways to distribute a number of jobs over a number of pro-

cessing elements. Each possible distribution is called a schedule. Not all schedules are feasi-

ble, because the storage capacity of each processing element is limited. The schedules that

would cause the capacity of one or more processing elements to overflow should be rejected. It

is the purpose of the conductor to choose the shortest feasible schedule. A practical load distri-

bution algorithm can not guarantee that a feasible schedule is chosen, because the maximum

size of a job is not known in advance. Itis therefore possible that deadlock will occur. How-

ev er, such a situation can be detected immediately. In a system with background store the risk

of deadlock will be lower, because the storage capacity of each processing element will be

larger.

To allow for the conductor to make sensible decisions, the size of a job has to be included in a

request for job allocation. In the applications that were developed in part I of this paper, this

information is already present for dynamic grain size control, so it can be used at no extra cost.

The load balancing algorithm of the conductor will base its allocation policy on the recorded

history of the application program that is running. In our opinion the history should also

include information about previous runs of the same application, which given that most appli-

cations are run more than once, should in principle be possible. The behaviour of an applica-

tion is captured in a parameterised “profile”. For example the quick sort algorithm has a profile

shown in figure (2).

step action expression interpretation
1. selectpivot p1 constant time
2. split list l × p2 time proportional to the length of the list
3. recursively sort sublists l1 × p3

l2 × p4 times dependent on the lengths of sublists
4. appendpivot and sublists l1 × p5 time dependent on length of first sublist

Figure 2 : Execution profile of quick sort

Fed with this information, the conductor can make estimates of the execution times of both

recursive inv ocations of quick sort at the time they are about to be scheduled (step 3). The

parametersp3 and p4 are multiplied by the lengths of the sublists, which are calculated by the

split phase for the purpose of dynamic grain size control. In a sense the conductor is allowed to

look one “step” ahead in time, which gives it predictive power to schedule the next family of

jobs.
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We are still investigating general methods for the specification of execution profiles.3 Our cur-

rent results are based on exact profiles of the applications, which state the real execution times

rather than the parameters from which execution times can be estimated. The performance

results presented in this paper are calculated a posteriori, from the recorded execution profiles.

The calculation of the optimum schedule (see section 4) is based on a heuristic, which uses

advance knowledge that is restricted to one “step”, such that the results provide an upper

bound on the performance gain on a full implementation of the system.

2.2.2. Thereducer

A reducer performs the actual rewriting of an expression into a normal form. To avoid the

complexity of dynamic process creation, all reducers are started when the system is started.

Steps 1 and 2 (below) are performed ad infinitum, by each reducer. Step 3 is performed when a

sandwich expression is encountered.

1) Thereducer waits until a job arrives. The job will require many reduction steps before it

reaches head normal form, since it represents a coarse parallel grain.

2) Thenormal form of a job must be returned to its creator. The creator of the job will find

that the root of the original representation of the job has been overwritten by the result.

3) The evaluation of a sandwich expression may cause new jobs to be created, provided

enough resources are available: a free reducer and sufficient storage for each job. The

conductor process will be asked permission before the jobs may be created. A single

transaction with the conductor is sufficient, since all potential jobs are available at the

same time. The reducer has to wait until the conductor sends its reply, otherwise it could

alter the jobs (while reducing) and this would make the size of a job an unreliable mea-

sure. Another reason is, that after all jobs have been taken up by other reducers, there can

be hardly any work left, such that the reducer might as well be suspended until all jobs

are complete. If the conductor refuses the request, evaluation proceeds in the normal lazy

fashion.

2.2.3. Graphtransport

In addition to the reducers, each processing element supports a graph transfer process. This

process operates like an interrupt handler, in the sense that when a message is received to

transport a graph, normal (reduction) processing is interrupted, and the transport is effectuated

as a single indivisible action. On completion, control is returned to the interrupted reducer.

Like a real interrupt handler, the graph transport process should not encounter delays, such as

those resulting from synchronisation requirements between producer and consumer of graphs.

The reason that such delays are impossible is because all parties in the transfer of jobs or

results are inactive while the transfer is taking place. The consumer of a graph is inactive

because it is a reducer that is waiting for either a result or a new job. In the case of a result
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transfer, the producer has just reached a normal form, hence it can no longer be active. It was

shown earlier, that it is necessary for the producer of a job to be suspended until the result

appears.

Since a graph that arrives at its destination requires heap space, interaction between graph

transport and reduction (via storage allocation) deserves further attention. Large graphs are

transported in a number of packets and each packet contains a number of nodes.Depending

on the particular storage allocator that is used, in one request an area may be allocated that is

large enough to store the entire graph, a packet or just a node. The smaller the allocation unit,

the more likely it is, that graph transport will be slow. Unfortunately storage allocation and

reclamation schemes that support varisized allocation are more expensive than those that only

support fixed size allocations.4, 5 Hence there is a tradeoff between data communication speed

and sequential reduction speed.

The graph transport mechanism that we have opted for assumes, that a contiguous block of

store, large enough to hold the entire graph is allocated before the first packet arrives at its des-

tination. The reasons for this choice are twofold. Firstly, the algorithm is simple enough to be

implemented directly in hardware. Secondly it may also serve to perform copying garbage col-

lection. In this way impaired sequential reduction speed can be improved significantly.

2.2.3.1. Copyinggarbage collection and graph transportation

The conditions that are satisfied when a graph transport operation is started can be summarised

as follows. The transmitting process is guaranteed not to alter the graph that forms the contents

of the message infrom − space, because the entire process of graph transportation is an indi-

visible action to the transmitting process. The storage area of the message at the receiver side

in to − spaceis known in advance. The area is also reserved, because the allocation has already

been done, for instance by the conductor.

To make an efficient hardware implementation possible, the number of accesses tofrom − and

to − spacemust be minimised, since accessing non local (off board) information incurs consid-

erable protocol overhead. Thefollowing classification of accesses may serve to clarify the

restrictions imposed by such efficiency considerations:

Reading nodes at arbitrary locations infrom − space

During the copying process, each reachable node must at least be read once. A shared

node is read as many times as there exist pointers to that node.

Writing pointer fields at arbitrary locations infrom − space(marking)

Sharing requires the copying algorithm to mark the nodes that have already been pro-

cessed. Marking may be performed by storing the forwarding address of a node in the

original node infrom − space.

Writing nodes in “stream mode” toto − space

A node needs to be output once only, if the relevant information contained in the node
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has been updated completely before it is output. This feature is a significant advantage, as

it allows the nodes to be output as a continuous stream (into a pipeline), without the need

for explicitly indicating the destination addresses of the nodes.

The compaction algorithm that we are using traverses the graph in pre-order. Entire nodes are

read out and stored in a local stack. The address of the next node to be output is maintained in

a local counter. It is incremented by the size of a node each time one is output toto − space.

The stack contains the nodes, which form the leftmost path from the root to the current node.

If the top of the stack contains a node that does not require any of its pointers to be updated

any more, it is output toto − space. The stack is popped and the appropriate pointer in the new

top node is replaced by the current value of the output counter. When a previously copied node

is encountered, its forwarding address rather than the contents of the output counter is used.

The algorithm is started, with a stack that contains a copy of the root and it terminates as soon

as the stack has become empty. At the end an additional traversal of the graph in

from − spaceis needed to reset the marks.

root
1

2

3 4

5 6

7

4 8

9

Initial stack configuration
1 2 3
1 2 4 5
1 2 4 6
1 2 4
1 2 stack growth
1 74*
1 7 8 9
1 7 8
1 7
1

Final stack configuration

Figure 3 : (a) sample graph (b) successive stack configurations

The sample graph of figure (3-a) causes the stack configurations of figure (3-b) at the moments

when a copy of a node is output toto − space. The cell marked with an asterisk is discovered

to be a shared node.

2.2.3.2. Cyclicgraphs

The graph compaction algorithm will fail to terminate if cycles are present in the graph. In

functional programs, cycles can only be created by recursive functions. Within the body of a

recursive function, the occurrence of the function name itself causes a cycle to be created in

graph reduction. The number of functions however is determined by the compiler, and remains

constant during execution. Pointers to functions within a graph can be implemented by con-

stants, which represent the index in the table, where the function is stored. Hence these cycles

will disappear.5 The same reasoning also holds for mutually recursive functions.
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The solution to the Hamming problem6 uses a recursive data structure, which if properly

implemented by a cyclic graph, results in a linear time algorithm. The cyclic data structure

maintains a form of history, which can also be achieved by using explicit parameters to repre-

sent the history. The algorithm still runs in linear time, but no longer contains cycles. The

same type of transformation can be used to eliminate cyclic data structures in a wide class of

practical applications.7 This transformation has been applied to one of our test programs (the

tidal model). Compaction algorithms exist that can handle cyclic graphs properly, but these are

less efficient. Either the graph must be traversed more than once, or the copied nodes are

updated after they hav ebeen output. We propose to avoid cyclic graphs, even though certain

computations will be performed less efficiently.

2.2.3.3. Performance analysis

An estimate is given of the expected performance of the graph compaction algorithm described

above, both in case it is implemented in hardware and in software. The two implementations

differ in several aspects:

Data transfer protocol cost

Some bus protocols allow for data to be transferred as a continuous stream, without inter-

vening addresses. Both at the transmitting and the receiving side the address of the cur-

rent datum, maintained in local registers, is incremented after each transfer. This allows

the hardware implementation to have a much higher access rate to theto − spacethan a

software implementation.

Instruction fetch and execution

The software implementation requires the CPU to fetch, decode and execute machine

instructions. Our transfer algorithm was coded in 32 Motorola MC68010 machine

instructions (78 bytes), of which on the average 90% are executed per node. These could

be kept in the MC68020 on-chip instruction cache. In spite of its ability to overlap

instruction decoding and execution, the MC68020 still requires time to execute some

instructions (e.g. branches) that can not be overlapped with data transfers.

Hardware parallelism

Many operations that must be performed in sequential order by a general purpose proces-

sor, can be performed in parallel by a special purpose processor such as a graph com-

paction module. For example, the algorithm has been designed such, that once a node is

ready, the original may be marked while the copy is being output to another store. Such

an optimisation can only be achieved with hardware.

Arbitration protocol cost

The share of protocol cost in accessing the bus is not negligible. The CPU has insufficient

means to optimise the usage of the bus, since the bus protocol circuitry enforces the use

of a standard protocol. In contrast, the hardware implementation needs to acquire mastery

over the destination bus once and may continue to use the bus as efficiently as possible.
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The performance of a software implementation (on a MC68010) was found to exceed 10.000

nodes per second. A preliminary study has shown, that the hardware implementation can be up

to two orders of magnitude faster.

The graph compaction algorithm has the disadvantage, that it requires a local stack, which on

the average requires√  n cells for a graph withn nodes.5 A stack of for instance ten thousand

nodes with 2× 32 bits per node does not pose unsurmountable problems. Because stack over-

flow can not be prevented nor ignored,4 special precautions must be taken to deal with stack

overflow properly.8

2.3. Cooperationof functional units

Having exposed the functionality of the components in the architecture, we can now show with

an example how they cooperate. Figure (4) represents a configuration with three processing

elements dedicated to reduction and the conductor. Graphs reside in overlapping stores. The

life cycle of a single job is traced by describing, in chronological order, the messages that

travel the system.

PE 1
reducer 1a

Store 1
job1 , . . .

PE 2
graph

transfer

Store 2
copy of

job1

PE 3
reducer 3a

PE 4
conductor

Message VI Message III

Message IIMessage V

Message I Message IV

Figure 4 : Graph and message transport

Message I: Create jobs

Reducer 1a on processing element 1 notifies the conductor of the creation of potential

jobs located in store 1. The size of the graphs representing the jobs and the pointers to

their roots are part of the message.

Message II: Transport job

The conductor decides to allocate reducer 3a to the first job, and sends a message to the

graph transfer process on processing element 2. The message contains the identification
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of the producer and the consumer of the graph representing the job and its location. Since

processing element 2 has local access to both the source and the destination area, the

graph can be transported node by node without requiring any intermediate copies. This

advantage is due to both the use of overlapping stores and the separation of synchronisa-

tion and communication. The conductor has a good opportunity to exploit this property of

the architecture in its allocation policy.

Message III: Start evaluation

When the transport has finished, reducer 3a must be made ready. This can be accom-

plished by allowing the graph transfer process to pass information to the local scheduler

of processing element 3. This form of synchronisation can not cause delays, since the

receiving party is guaranteed to be waiting for it. The pointer to the root of the graph is

part of the message.

Message IV: Result available

The availability of the result has to be announced to the conductor, since it must know

when a reducer is free to receive a new job. The conductor also organises the transport of

the result. The message contains the whereabouts of the result and the identity of its pro-

ducer and consumer.

Message V: Transport result

The transport of the result is similar to job transport.

Message VI: Job complete

The scheduling administration on processing element 1 is updated, to register that a job

that reducer 1a is waiting for has now arrived. By the time that all outstanding jobs have

been completed, the waiting reducer is made ready by the local scheduler.

A similar communication pattern emerges if jobs are to be transported under less favourable

circumstances. The transfer will involve more processes and intermediate copies can no longer

be avoided.

2.4. Modeof operation

We think of a parallel architecture for reduction as an embedded processor in a conventional

host computer system. The operating system of the latter provides facilities to load and execute

an application on the embedded system. The embedded processor is allocated to a single task,

in the form of the main expression to be reduced, and remains allocated to the task until it

completes. This obviates the need for multi-programming and other complications necessary

in a general purpose system. We can even afford to omit support for input/output operations,

because the embedded system may be fed a stream of jobs, which it will turn into a stream of

results. While preparing the next job, the host may perform the necessary input/output opera-

tions.
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Before an application can be started, its representation has to be prepared for execution.

Depending on the way the reducer references the representation it may be (partially) preloaded

in the processing elements, or could be transmitted as part of the jobs. If the demands with

respect to the necessary code of the parallel computations are highly dynamic, preloading

appears to be wasteful of both space and time. If the same code is required by all jobs,

preloading is more economic.

The self modifying (sometimes called self optimising) property of the code generally used in

graph reduction has a menacing characteristic to the code management scheme. Although

semantically equivalent, some representations of the same function consume more space than

others. Consideras an example, the function that computes the list of natural numbers. As

soon as a certain number of elements of the list have been evaluated, the representation will

have grown with respect to its initial form. Keeping the representation as it is saves time, when

elements of the list are needed more than once. Reverting to the original form saves space, but

requires the list to be recomputed if it is needed again. In a sequential graph reduction system,

it may be expected, that the self modifying property may be controlled more easily than in an

implementation where code is distributed over a network of processing elements. The reason

is, that transportation of a large representation of a function incurs a time penalty with respect

to a small representation. In the extreme case, it may even be worthwhile to perform an

amount of recalculation to reduce communication costs and still achieve best performance. In

our experiments we have selected the behaviour that gav ethe best performance improvement

with respect to normal sequential versions of the same applications.

3. Performance model

To quantify the performance difference between sequential lazy graph reduction and graph

reduction with the proposed parallel strategy and architecture, some measures are defined and

applied to the application programs. With normal lazy graph reduction, the total execution

time for a program is assumed to be largely dependent on the total number of reduction steps.

If the individual reduction steps require roughly the same amount of computation, this relation

is assumed to be linear. Such is the case with the combinator reduction system used in our

experiments.9 Therefore, the amount of work involved in normalising an expression is identi-

fied with the number of reduction steps involved. The definition of the sandwich strategy is

such, that there is no difference in the total number of reduction steps required, whether a pro-

gram is evaluated under the normal lazy strategy or with the sandwich strategy. Using the

sandwich strategy, the net execution time of the program is less, due to parallel evaluation of

jobs. The diagram of figure (5) schematises this difference. The horizontal line segments rep-

resent the number of reduction steps required by the different branches in the evaluation.
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b steps s1 steps e steps

s2 steps

Figure 5 : Time diagram of parallel evaluation

On a system with unlimited processors and free data communication the total number of

reduction steps, whenm branches are generated, is:

(1)Rt = b +
m

i=1
Σ si + e

With the sandwich strategy the net number of reduction steps is:

(2)Rn = b +
m

i=1
max si + e

The numbersb, s1
. . . sm and e in (2) are also interpreted as net reduction steps, rather than

total reduction steps as in (1). The performance gain of parallel graph reduction over lazy

graph reduction may now be expressed asRt /Rn.

This is not a realistic approximation, since programs must be partially rewritten before the

sandwich strategy may be applied effectively. Therefore, it is only fair to refer to the measure

Rs, which gives the number of reduction steps for the sequential, untransformed version of the

same program. The ratioRs/Rn is considered to be a more realistic measure of performance

gain. The ratioRs/Rt gives the performance loss due to the cost of program transformations

required to exploit parallelism.

Refinements are introduced to model some of the delays that may be experienced in the sys-

tem. The first refinement compensates for loss in computing resources due to the transporta-

tion of jobs and results, since in the proposed architecture, the processing elements operate on

private stores. In the modified time diagram of figure (6), the horizontal axis represents reduc-

tion steps as before. The length of a diagonal arrow represents the size of a graph that is trans-

ported, measured as a number of nodes. A graph transfer process behaves like a pipeline: one

processor collects the nodes of the graph and sends a stream of nodes through the network. At

the end of the pipeline a companion processor assembles the copy of the graph. In the general

case two processors are actively working on the same transport.Transportation cost is

expressed in reduction steps, by equating the time necessary for the transportation ofT nodes

with that spent in one reduction step. Furthermore, a penalty ofC reduction steps accounts for

the time spent in communication between processes. The roman numerals used to identify the

transactions in figure (4) are shown in parentheses in figure (6).
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b steps C(I) C(II)

j1 nodes

C(III) s1 steps C(IV)

C(V) r1 nodes

C(VI) e steps

C(II)

j2 nodes

C(III) s2 stepsC(IV)
C(V)

r2 nodes

Figure 6 : Time diagram of parallel evaluation and transportation

The transportation cost is dependent on the distance travelled. As a first approximation, we

would like to ignore locality, and assume that all graph transports relate to the same distance.

The values ofC andT are regarded as constants of the hardware and software configuration of

a particular implementation of the proposed architecture.

In the performance measures developed thus far, the role ofRn is assumed by a new quantity

Rg, which takes data communication cost into account. Letj i andr i represent the numbers of

transported nodes in respectively the i − th job and thei − th result. The communication cost

pertaining to thei − th job/result is:

(3)ci = 


j i

T



+ 

r i

T



+ 4 C

The gross number of reduction steps of the whole family ofm jobs is defined as:

(4)Rg = b +
m

i=1
max (ci + si ) + e + 2 C

The ratioS = Rs/Rg gives the maximum speedup that can be attained. If the number of pro-

cessing elementsN required to achieve this speedup is taken into account, we find for the pro-

cessor efficiency:

(5)E =
Rt

Rg × N

The enumerator in (5) represents the amount of work done, whereas the denominator repre-

sents the maximum available computing capacity.

4. Optimal scheduling

Before considering the implementation of “on-the-fly” load balancing on our experimental

reduction machine, we have inv estigated the consequences of the performance model outlined

in the previous sections. This model assumes that the number of processors is sufficiently large
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to allow every job to be scheduled for execution as soon as it is generated. In the more realistic

case of a limited number of processors, jobs will have to wait until a reducer becomes avail-

able. To calculate the best possible performance of an application on a given architecture, we

have used the data obtained with the performance model to compute an optimal mapping of

the generated jobs onto the available processors. This mapping, which minimises the turn

around time, is called an optimum schedule. Computing an optimal schedule a posteriori

serves two purposes. At first it yields an upper bound for the speed up that can be attained with

the given application on the class of architectures considered. Secondly, an optimum schedule

can be useful when the same application is executed frequently with different input data and

when the generation of jobs hardly depends on the input data.This is the case with the fast

Fourier transform, Wang’s algorithm and the tidal model, provided the size of the problem

remains fixed. For example, the latter application is designed to be used frequently and the

generation of parallel jobs in the program only depends on geographical data, which are not

likely to change often.

4.1. Schedulingof jobs

The illustration of figure (7) shows two jobs (fork1 and fork2) that have executed asandwich

primitive and three jobs that remain sequential (mid1, mid2 and mid3). The horizontal axis

represents the elapsed time as measured in reduction steps. The depicted durations of all job

entities include the communication cost that is modeled by the parametersC andT in the per-

formance model (shown by the dashed arrows).

elapsed time

fork1

fork2

mid3

mid2

join2

mid1
join1

Figure 7 : Fork, mid and join jobs

After evaluating a sandwich reduction step, a job is suspended until the forked jobs have all

terminated. From a scheduling point of view, this gives rise to three different job entities with a

strict precedence relation:

fork jobs

A fork job executes a certain amount of reduction steps and then spawns a number of

descendant jobs.
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join jobs

When its descendants have terminated and their results have arrived, a fork job may

resume reduction until it either terminates or encounters another sandwich application. In

the first case the job is called a join job, the second case classifies it as a fork job again.

mid jobs

A mid-job does not execute thesandwichfunction and remains a sequential job.

Once an application has been run, all relevant data that is needed to compute the duration of

fork, mid and join jobs is collected. The problem that remains to be solved in order to obtain

an optimal schedule is to find a distribution of fork, mid and join jobs that satisfies the given

precedence relations and minimises the total execution time.

elapsed time

fork2

tbranch

mid3 join2
processor1

fork1 mid1 mid2 join1
processor2

Figure 8 : An optimal schedule with two processors

As an example, figure (8) illustrates a schedule of the jobs involved in the application of figure

(7) on a two processor system. The dashed lines represent the time periods that a processor is

idle. When the jobfork2 wishes to submit its two descendant jobs (att = tbranch), there exists a

choice whetherprocessor1 should continue to execute jobmid2 or job mid3. Both allocations

represent a partial schedule and should be evaluated to decide which of the two is the shortest.

The diagram of figure (8) shows the optimum schedule for this problem. In large applications

many branches arise, yielding a vast search space to find the optimum schedule. The search for

an optimal schedule with three types of jobs and prescribed precedence relations is an NP-

complete problem.

4.2. Branchand bound algorithm

The algorithm that we have used to find the optimum schedule constructs a tree of possible

allocations of jobs to processors. It is based on the branch and bound principle.10 Each node in

the tree represents the choice of allocating a job to a processor. A path from the root of the tree

to a leaf forms a complete schedule. While the tree is constructed in a depth-first manner, an

administration of available jobs is built and attached to each node of the tree. This is necessary

because the set of available jobs at each node depends on the history (i.c. which fork jobs were

executed). The fact that join jobs have to be scheduled at the same processor, where the corre-

sponding fork job once was allocated also renders the allocation policy history sensitive. If this

restriction on the allocation of join jobs would not have been imposed, the system would have



chap VIII Parallel graph reduction for divide-and-conquer applications† 193

to physically transport the representation of the join jobs to the elected processor. It is

expected, that the incurred data communication cost does not outweigh the gain in scheduling

efficiency that can be obtained by unconstrained allocation of join jobs. In our application pro-

grams and on our architecture, the cost to transport the representation of a join job is more

than an order of magnitude larger than its reduction cost.

To reduce the size of the search tree, the scheduling program computes a lower bound on the

best possible schedule that can be realised from a given node and compares this bound with

the best schedule found so far. If the lower bound exceeds this schedule, the search beyond

this point is cancelled. The lower bound is calculated with the expressiont + e/p, wheret is

the elapsed time, measured in reduction steps, to arrive at the given branch point (e.g.

t = tbranch in figure 8). The quantitye represents the total number of reductions steps that

remain to be performed in all jobs, from the current branch point until the end of the applica-

tion. The ratioe/p equals the processing time required to execute the remaining amount of

work (e) if an exact partitioning of the work over the available ( p) processors would be possi-

ble. The lower bound coincides with the real optimum schedule, if this exact p-partition exists

for the jobs that remain to be executed.

The proposed branch and bound algorithm is most effective if the search is directed in such a

way that a near optimum solution is found quickly. If such a near optimum is established in

the very beginning of the schedule, many search paths in the remainder of the program repre-

senting longer schedules can be effectively pruned. To achieve this, the following heuristics

have been incorporated in the program:

a) Becausein our applications join jobs always contain a negligible amount of work, first an

optimal schedule is computed for fork- and mid jobs.

b) If a choice exists, a fork job has priority over a join job, thus fork jobs are scheduled first.

Scheduling a fork job increases the number of jobs that still have to be scheduled, while

allocating a mid job decreases this number. The heuristic assumes, that better schedules

arise if more jobs are available.

c) A larger job takes priority over a smaller job. This heuristic has been proven to yield a

schedule that is at most a factor of two larger than the optimal schedule.11

4.3. Aparallel program to find the optimum schedule of a set of jobs

While designing the program to find optimal schedules for divide-and-conquer algorithms, it

appeared that the program itself could be written as a divide-and-conquer application and

included in the set of application programs that we use to test our parallel reduction model.

However, because jobs have to be self contained, a central administration containing the best

schedule found so far, can only be maintained at high cost. This implies that the pruning of

subtrees can not be performed. The gain in scheduling time due to parallel evaluation has to be
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compared to the loss in search efficiency. Considering that the search with heuristics and lower

bound comparison only realises a speed up by a factor of two with many jobs of about the

same size, the speed up of the scheduling algorithm by parallel execution soon exceeds the

loss in search efficiency. The threshold mechanism that we use for dynamic grain size control

causes all mid jobs to be of approximately the same size.

The SASL functionAlloc of figure (9) implements the tree search algorithm without the lower

bound calculation and cancelling of subtrees. This parallel version of Alloc shows how the

sandwich function is used in combination with the threshold mechanism. TheAlloc function is

a simplified version of the result obtained by the job-lifting and grain size transformations,

which are described in part I of this paper.

1. Alloc jobold jobnew procold( ) level
2. = Process( jobold + + jobnew) procold level
3. Alloc jobold ( ) procold (proc : procnew) level
4. = Alloc ( ) jobold (proc : procold) procnew level
5. Alloc jobold jobnew procold(proc : procnew) level
6. = Busy proc → allocnextproc
7. jobnew= ( ) → allocnextproc
8. level > Threshold→ (allocjob1 nextlevel) : (allocjob2 nextlevel)
9. sandwich cons(allocjob1 nextlevel) (allocjob2 nextlevel)

10. WHERE
11. jobold1 : ( job : jobnew1) = FindNextJob jobold jobnew proc
12. allocnextproc= Alloc ( )  ( jobold + + jobnew) (proc : procold) procnew level
13. allocjob1 = Alloc ( )  ( jobold1 + + jobnew1)
14. ((Allocate jobproc) : procold) procnew
15. allocjob2 = Alloc ( job : jobold1) jobnew1 procold (proc : procnew)
16. nextlevel= level + 1

Figure 9 : The parallel tree search function

The functionAlloc scans two administrations: a job administrationjobold + + jobnewand a

processor administrationprocold + + procnew. The lists jobold and procold contain jobs

and processors that have already been scanned, whereasjobnew and procnewcontain the

items that have not yet been considered. The heads ofjobnewand procneware the job respec-

tively processor that are currently considered for allocation. The applications ofallocjob1 and

allocjob2 (in lines 8 and 9) constitute the two alternatives of allocating the actual job to the

actual processor (allocjob1) and not allocating the actual job (allocjob2). The latter alternative

causes the next job to be considered for allocation. Both alternatives are submitted for parallel

evaluation by the sandwich application in line 9.However, this line is only executed if the

actual depth of the tree (level) is below a certain value Threshold. If the level exceeds the

threshold value, the same alternatives are evaluated in line 8, but in this case sequentially.

The definition in line 1 applies ifprocnewis empty, which means that no more processors are

available for allocation. The functionProcessadvances the time until one of the processors
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becomes free (via termination of the current job allocated to that processor).Processthen

recursively calls Alloc to perform allocation of the recently freed processor(s). The definition

of line 3 applies if jobnew is empty, which is the case when no more jobs are available for

allocation to the current processor. Howev er, there may still be join jobs that are ready for

execution and have been skipped because they hav eto be executed by a different processor.

Thus instead of terminating, the functionAlloc is called recursively in line 4 to enable join

jobs to be allocated to the next available processor. The functionBusy in line 6 checks if the

current processor is ready to receive a job. The functionFindNextJobin line 11 scans the job

administrationjobnewfor the next job that is both ready and allowed to execute on processor

proc (join jobs are preallocated). Jobs are found in a sequence that satisfies the heuristics b)

and c) of the previous section. Skipped jobs are prepended in front ofjobold, such that the

result jobold1 : ( job : jobnew1) is still the complete administration andjob is the required

next job.

5. Results

Having developed annotated parallel applications, a basic concept of a parallel architecture, a

performance model and an algorithm to calculate optimal schedules, we can now present pre-

liminary results. The most important result is the speedup that may be attained with the various

applications. The data that the scheduling algorithm requires to compute the speedup could be

obtained by running the applications through a fully implemented parallel reduction machine.

However, since the job structure that develops during execution of the applications is strictly

hierarchical, we were able to extract the required data from a simple pilot implementation. The

remainder of this section describes the experimental system that we built and the way the per-

formance figures were obtained from the experiments.

5.1. Experiment

The experimental system consists of a alternating string of processing elements and overlap-

ping stores.5 By limiting the maximum depth of the job-tree to the number of processing ele-

ments, we were able to test our ideas while the design of the conductor is still in progress. Cur-

rently, a  processing element supports one reducer and one graph transport process. During an

experiment, the first processing element in the string receives the main expression. The jobs

produced from the main expression are evaluated one by one on the second processing ele-

ment, which in turn may pass jobs it creates on to the third processing element etc. This corre-

sponds to a pre-order traversal of the job-tree. It does not however cause reduction to be per-

formed in parallel. A run on the experimental system produces the data that the optimal sched-

uling algorithm requires to compute the speedup that may be attained. In a full implementation

of our reduction machine similar data would be exchanged between reducers and the conduc-

tor to perform on-the-fly scheduling.
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5.2. Systemparameters

The measurements on the experimental system have been performed using a slow, fixed com-

binator graph reducer.9 The observed data communication performance of 10000 nodes per

second is based on the binary node representation of this reducer (one node occupies 6 bytes

of storage). To obtain a realistic estimate of theT-factor we should use the real-time perfor-

mance of an optimised sequential combinator graph reducer,12 which exceeds 10000 reduction

steps per second on a VAX 11/750. Experience with CPU bound applications has shown that

the MC68010 processors of the experimental system have about the same performance.The

reported reduction speed can be improved by one order of magnitude via optimisation tech-

niques, but the same holds for the data communication speed via the use of special hardware.

The latter may even yield an improvement of two orders of magnitude (see section 2.2.3.3).

Considering both performance figures we may derive a value for T = nodes persecond/

steps persecond= 10000 / 10000= 1 nodes/step. Tuijnman and Hertzberger13 report mes-

sage passing delays on a multi processor system that is similar to ours. When two processors

are connected by a shared memory, which is the case for communication between the conduc-

tor and reducers, a delay of 2 msec is found. Therefore a reasonable value for C =

steps persecond× seconds= 10000× 0. 002= 20 steps.

5.3. Applications

A set of five application programs has been run on the experimental system to acquire the data

needed to perform optimal schedule calculations. Four of these application programs; quick

sort, the fast Fourier transform, Wang’s partition algorithm and the tidal model have been dis-

cussed in part I of this paper. Particular attention has been paid to annotation and transforma-

tion to adopt the applications to parallel execution. In this part of our paper we introduced a

fifth application, that calculates the optimal schedule of a set of jobs with hierarchical prece-

dence relations. The remainder of this section presents a brief description of the input data it

has been provided with, followed by a discussion on performance characteristics under opti-

mal scheduling conditions.

5.3.1. Theoptimal scheduling application

The scheduling program presented in section 4.3 has been applied to (artificial) performance

data of seven hypothetical jobs. As such the program can be executed like any other parallel

application and the acquired data can be used to calculate optimal schedules and maximum

speed-up figures. To study the performance of an annotated program on a parallel architecture,

the relation between four architectural variables needs to be considered.

Speed-up factor

This quantity is defined as the quotient ofRs (the execution time of the sequential pro-

gram) and the duration of the optimal schedule. It corresponds to the intuitive notion that
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is conveyed by the word speed-up and it is the objective function that has to be max-

imised. Thelimit of the speed-up when the number of processors goes to infinity is the

quantityS.

Threshold value

A threshold is present in three of the five application programs (see figure 9). In these

programs an abundant amount of parallel jobs is generated by recursive function calls. A

comparison with the threshold parameter stops the recursion when the grain size of the

jobs becomes too small. For a given application size and a given number of processors an

optimal value for the threshold is determined. The threshold value is optimal when the

speed-up is maximal.

Synchronisation and communication costs

These are the parametersC andT of section 5.2. Their value determines the minimum

grain size of a job that can still be submitted for parallel execution without decreasing the

overall speed-up.

The number of processors

This parameter can be varied to determine for a given application the smallest value for

which the maximum speed-up can be achieved. Another possibility is to determine the

maximum number of processors for which the efficiency E of the system stays above a

certain cost-effective value.

To present the performance data of the scheduling application, two sets of curves are drawn in

figures (10) and (11). In both figures the speed-up is plotted against different values of the

threshold. For the scheduling application the threshold value represents a specific depth in the

search tree beyond which no more parallel jobs are generated. At the left end of the x-axis in

the figures this depth is zero, which means that no parallel jobs are submitted.Increasing the

threshold value by one means doubling the number of parallel jobs, as long as the search tree

remains balanced.
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Figure 10 : Speedup of the scheduling program for 8 processors with variousT-factors

In figure (10) different speed-up curves are shown with the number of processors fixed to

eight. Each curve corresponds to a certain performance of the data communication subsystem,

expressed by theT-factor belonging to the curve. The figure shows that for this application the

T-factor should not drop below a value of 0.1 (i.e. the required throughput of the communica-

tion network should be higher than 1 node per 10 reduction steps). With this throughput a

maximum speed-up of 4.6 can still be achieved with an optimum threshold value of 4. It is

assumed, that the lowest acceptable processor utilisation is 50% (a speed-up of 4.6 with 8 pro-

cessors in this case). Figure (10) also shows that data communication becomes a negligible

factor when the network throughput exceeds the value of one node per reduction step (T = 1).

The performance data of the other application programs show a similar behaviour. In all cases

the network throughput has a critical region betweenT = 1 andT = 0. 1.
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Figure 11 : Speedup of scheduling forT = 0. 1with various numbers of processors

Figure (11) shows a set of speed-up curves for the lowest acceptable network throughput of

T = 0. 1.For each number of processors an optimum value of the threshold exists and the cor-

responding processor utilisation decreases when the number of processors increases, to drop

below the assumed acceptable limit of 50% for 16 processors or more. We may conclude that

the scheduling application with the given input and the given data communication system with

(T = 0. 1)can have an economical speed-up of 4.6 with 8 processors.

5.3.2. Optimalperformance

To calculate the optimal schedules for the remainder of our application programs, they hav e

been supplied with the following input data.The quick sort function has been applied to a list
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of 1024 values, resulting from the sine function applied to the first 1024 natural numbers. The

fast Fourier transform algorithm calculates the frequency and phase spectrum of a real valued

function in the time domain. The parallel version of the algorithm has been supplied with a

data array of 512 elements, containing 8 periods of a sawtooth wav eform with an amplitude of

64. The real part of the 512-point transform shows peaks of the same height at every eighth

point, corresponding to the flat frequency spectrum of a sawtooth. The input for the Wang

algorithm was a square, diagonally dominant, tri diagonal matrix of 255 rows. The tidal model

has been run on a grid of 10× 10 points representing an area of 1000 km2, during 5 time steps

of about 15 minutes simulated time. The initial conditions were set to an average water depth

of 30 metres and a slope in the water height of 3 metres in the x direction.

The best economical speedup for the application programs is presented in table (1). The first

row giv es an impression of the order of complexity that ranges from O(n) to O(n!). The second

row states the execution time (Rs) of the sequential versions of the applications on the given

input data. The third row shows the performance gain or loss (Rs / Rt) that is incurred by

transforming the programs into a form suitable for parallel evaluation. Theinclusion of a

threshold mechanism and the addition of thesandwichandown functions are responsible for

most of the performance loss. In case of the tidal model the transformation is particularly com-

plicated. It involves the introduction of streams to model concurrent processes and the division

of a space staggered grid into equal parts. The resulting program appears to be a more efficient

version of the original program. We hav enot been able to find an explanation for this phenom-

enon. Table (1) presents the results of the tidal model in case of a bisection of the grid.

The fourth row in table (1) presents the best speedup results that can be obtained with the

given application and a minimumT-factor (fifth row), provided that the processor utilisation

does not drop below the supposed economically acceptable value of 50%. The minimumT-

factor represents the data communication capacity that should at least be available to achieve

the given speedup. The next two rows show the optimal values of the threshold and the number

of processors that should be used under these circumstances. The penultimate row of the table

gives an estimate of the number of nodes that is needed by the most heavily used processor; all

other processors need fewer nodes. These estimates are based on a reducer that uses fixed size

nodes (each node has a tag and two pointer fields) and a reference counting garbage collector.

With a non-reference counting garbage collector at least twice the estimated amount of store is

necessary to prevent garbage collection from requiring to much processing time.5

The last row of table (1) presents the maximum speedup (S) that will result if the communica-

tion performance (T) grows to infinity and unlimited processors are available. The values

shown are based on the lowest threshold that we have used in the experiments. Comparing this

row to the speedup figures shows that much of the potential available parallelism can be

exploited on a practical local memory architecture. The maximum speedup may be larger than

the number of processors used because the speedup refers to the sequential untransformed ver-

sions of the programs and the transformation by itself may already speedup computations.
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Legend schedule quick sort fast Fourier Wang tidalmodel

Program transformation

Order of complexity n ! / p ! n log n n log n n  n2

Sequential steps 530908 493205 262655 190930 199644
Transformation loss 0.98 0.94 1 0.87 1.29

Best economical schedule
Economical speedup 4.6 2.2 4.5 2.7 2.2
Minimum T-factor 0.1 1 1 1 0.1
Threshold 4 32 128 - -
Number of processors 8 4  8 5 2
Minimum space
per processor (nodes) 7995 8223 5506 6213 5614

Unlimited processors and no data communication cost
Maximum speedup 15.2 2.8 7.4 3.7 2.5

Table 1 : Optimal performance of the five application programs

The Wang partitioning algorithm solves a set of linear equations that result in a tridiagonal

coefficient matrix. Because this algorithm has been designed for parallel execution and as a

consequence lacks a sequential counter part, the transformation loss has to be interpreted dif-

ferently. The execution time (Rs ) of the Wang program applied to an undivided matrix has

been compared to the total number of reduction steps when the program is applied to the same

matrix divided in five equal parts. The Wang algorithm and the tidal model have been anno-

tated in such a way that a fixed number of jobs is generated during execution. This number is

determined by the transformation. The reason for doing so is that the grain size of the jobs

does not depend on the input data and can be fixed by the programmer. Both quick sort and the

schedule program generate jobs whose grain size depends on the calculations. In such cases

the number of jobs can not be fixed a priori and a threshold mechanism has to be included by

the programmer. In case of the fast Fourier transform the number of jobs does not depend on

the calculations and the grain size of jobs could be fixed by a transformation into a program

without a threshold mechanism. However, due to the nature of the calculations a recursive ver-

sion of the algorithm with a threshold mechanism is much simpler to derive.

6. Conclusions

Parallel graph reduction based on jobs is a useful concept. It allows divide-and-conquer appli-

cations and programs based on synchronous communicating processes to run faster on a paral-

lel machine. The architecture of such a machine can be based on local store. Jobs are copied

from one processing element to another, but work is not duplicated. Even cyclic programs can

be made to benefit from parallelism on an architecture that does not support globally cyclic

graphs.
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Centralised control over the machine by the conductor is feasible because the interaction

between the applications and the central control is restricted to a minimum. The threshold

mechanism that we propose to regulate the grain size of parallel computations serves to restrict

such communications. Centralised control is also effective. The information about the behav-

iour of the running application that is available to the conductor enables it to schedule jobs in a

near optimal way. At each decision point the conductor has knowledge about the resource

requirements of the set of jobs that are currently being offered for consideration as parallel

grains. As soon as the system is sufficiently loaded with jobs, new requests may be refused, to

prevent the administration from overflowing.

The job concept causes the process structure of a parallel computation to be strictly hierarchi-

cal. This makes high speed data communication possible, since the transport of a job or result

can be separated from synchronisation. The transactions with the conductor involve small mes-

sages, which are transmitted when synchronisation occurs. The space to store these small mes-

sages is always available because the transmit operation is blocking. The jobs and results

transmitted after consulting the conductor, may contain a much larger volume of data that can

be transmitted without further synchronisation. In this case the space to store the message at

the receiver side is reserved before the transaction is started. Job and result transport is simple

enough to be implemented directly in hardware, allowing for a data communication speedup of

two orders of magnitude with respect to a software implementation. The separation of syn-

chronisation and communication in general purpose systems is not feasible since one can not

always afford to have both the producer and the consumer of a message to be delayed while

data is being exchanged. Another difference between ours and a general approach to concur-

rency is that reducers may be considered both as client and as server. Hence a request for ser-

vice may safely be refused because the client is capable of servicing its own request. The cost

of such a refused request is merely the time necessary to send a message to the conductor and

wait for the reply. The actual job graph is not transmitted in that case.

The results that we have presented are based on a posteriori optimal scheduling. Rather than

building a full scale system, we have restricted ourselves to a pilot implementation. The sched-

uling data are recorded during the run of an application and processed after the application has

been run. The assumptions about the number of available processors are realistic, but the

parameters and relations that model the data communication network are a first approximation

that will be refined in future work. Two other differences with scheduling as it would be per-

formed on a fully implemented system are the accuracy of the parameters that determine the

decision making policy and the time that the scheduling algorithm is allowed to spend on mak-

ing a decision.

We hav eshown that under conservative assumptions with respect to the performance of the

data communication sub-system there is a situation where a processor utilisation of over 50%

may be attained. Some applications are more critical in this respect than others because their

computational complexity is lower in terms of the job and/or result size. The actual number of

processors that may be occupied depends on the application and the problem size. An
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interesting aspect of our proposal is that we have managed to escape from the computer sci-

ence tradition that a new compiler should compile itself. Instead the heart of our system is

used as one of its applications.
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