#!/usr/bin/env python
# -*- coding: utf8 -*-
'''
gpx_reduce v1.8: removes points from gpx-files to reduce filesize and
tries to keep introduced distortions to the track at a minimum.
Copyright (C) 2011,2012,2013,2015,2016,2017 travelling_salesman on OpenStreetMap
changelog: v1.2: clarity refractoring + speedup for identical points
v1.3: new track weighting functions, progress display
v1.4: new track weighting function, restructuring for memory saving
v1.5: algorithm speedup by roughly a factor of 2 by eliminating some cases.
v1.6: presets for train etc.
v1.7: introduced weighting function for elevation errors
v1.8: speed-dependent distance limit
v1.9: removal of all dependencies (lxml, scipy, numpy, pylab)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
'''
import datetime, sys, time, operator
from math import *
import xml.etree.ElementTree as etree
from optparse import OptionParser
parser = OptionParser('usage: %prog [options] input-file.gpx')
parser.add_option('-v', '--verbose', action='store', type='int',
dest='verbose', default=1, help='verbose=[0,1]')
parser.add_option('-d', '--dist', action='store', type='float', dest='max_dist',
default=0.5, help='Maximum distance of line from original points in meters')
parser.add_option('-o', '--out', action='store', type='string',
dest='ofname', default=None, help='Output file name')
parser.add_option('-m', '--maxsep', action='store', type='float', dest='max_sep',
default=200.0, help='Absolute maximum separation of points. No points will be deleted where the resulting distance would become greater than maxsep. Standard JOSM settings will not display points spaced more than 200m. -1 means no limit.')
parser.add_option('-n', '--maxsep0', action='store', type='float', dest='max_sep0',
default=4.0, help='Maximum separation of points at zero speed.')
parser.add_option('-t', '--maxseptime', action='store', type='float', dest='max_sep_time',
default=3.0, help='Maximum time separation of points, which will be added to maxsep0. Maximum allowed point separation will be min(m, n + t*v) where v is the speed in m/s.')
parser.add_option('-e', '--ele-weight', action='store', type='float',
dest='ele_weight', default=0.0,
help='Weighting of elevation errors vs. horizontal errors. Default is 0.')
parser.add_option('-b', '--bend', action='store', type='float', dest='bend',
default=1.0, help='Penalty value for large bending angles at each trackpoint. Larger values (1 or more) make the track smoother.')
parser.add_option('-w', '--weighting', action='store', type='string',
dest='weighting', default='exp',
help='''Weighting function to be minimized for track reduction:
pnum (number of points),
sqrdistsum (number of points plus sum of squared distances to leftout points),
sqrdistmax (number of points plus sum of squared distances to each maximally separated leftout point per new line segment),
sqrlength (number of points plus sum of squared new line segment lengths normalized by maxsep),
mix (number of points plus sum of squared distances to each maximally separated leftout point per new line segment weighted with corresponding segment length),
exp (number of points plus sum of squared distances to leftout points with exponential weighting of 1/2, 1/4, 1/8... from furthest to closest point). exp=standard''')
parser.add_option ('-r', dest='remove', default='extensions,hdop', help='remove tags T1,T2,..,Tn from every trackpoint', metavar='T1 T2 Tn')
options, args = parser.parse_args()
if len(args) < 1:
parser.print_help ()
sys.exit (2)
# use the WGS-84 ellipsoid
rE = 6356752.314245 # earth's radius
a = 6378137.0
b = 6356752.314245179
timeformat = '%Y-%m-%dT%H:%M:%SZ'
# the linear algebra with lists
dot = lambda p1, p2: reduce (operator.add, [a * b for a, b in zip (p1, p2)])
vmin = lambda p1, p2: [a - b for a, b in zip (p1, p2)]
smul = lambda p, c: [a * c for a in p]
sdiv = lambda p, c: [a / c for a in p]
norm = lambda p: sqrt (sum (a * a for a in p))
def distance (p1, pm, p2, ele_weight=1.0):
# returns distance of pm from line between p1 and p2
h1, hm, h2 = norm (p1), norm (pm), norm (p2)
if ele_weight != 1.0 and min(h1, hm, h2) > 0.0:
hmean = (h1 + hm + h2) / 3.0
p1 = smul (p1, ele_weight + (1.0 - ele_weight) * hmean / h1)
pm = smul (pm, ele_weight + (1.0 - ele_weight) * hmean / hm)
p2 = smul (p2, ele_weight + (1.0 - ele_weight) * hmean / h2)
line = vmin (p2, p1)
linel = norm (line)
vm = vmin (pm, p1)
if linel == 0.0:
return norm (vm)
linem = sdiv (line, linel)
position = dot (vm, linem) / linel
if position < 0.0:
return norm (vm)
elif position > 1.0:
return norm (vmin (pm, p2))
else:
return norm (vmin (vm, smul (line, position)))
def latlonele_to_xyz (lat, lon, ele):
s = sin (radians (lat))
c = cos (radians (lat))
r = ele + a * b / norm ([s*a, c*b])
lon = radians (lon)
return r * c * sin (lon), r * c * (-cos (lon)), r * s
def reduced_track_indices(coordinate_list, timesteps=None):
# returns a list of indices of trackpoints that constitute the reduced track
# takes a list of kartesian coordinate tuples
m = len(coordinate_list)
if (m == 0): return []
if timesteps != None and len(timesteps) != len(coordinate_list):
timesteps = None
# number of dimensions
d = len(coordinate_list[0])
# remove identical entries (can speed up algorithm considerably)
original_indices = [0]
points = [{'p': coordinate_list[0], 'weight':1}]
if timesteps != None: points[0]['t'] = timesteps[0]
for i in range(1, m):
if False in [coordinate_list[i-1][j] == coordinate_list[i][j] for j in range(d)]:
original_indices.append(i)
points.append({'p': coordinate_list[i], 'weight':1})
if timesteps != None: points[-1]['t'] = timesteps[i]
else:
points[-1]['weight'] += 1
n = len(points)
# progress printing initialisations
progress_printed = False
progress = None
tprint = time.time()
# execute Dijkstra-like algorithm on points
points[0]['cost'] = 1.0
points[0]['prev'] = -1
for i2 in range(1, n):
penalties = {}
imin = None
costmin = float('inf')
for i1 in reversed(range(i2)):
p1 = points[i1]['p']
p2 = points[i2]['p']
seglength = norm (vmin (p2, p1))
# estimate speed between p1 and p2
if timesteps != None:
dt = (points[i2]['t'] - points[i1]['t']).total_seconds()
v = seglength / max(0.1, dt)
else:
v = seglength / float(i2 - i1) # assume 1s time spacing
max_sep = options.max_sep0 + v * options.max_sep_time
if options.max_dist >= 0:
max_sep = min(max_sep, options.max_sep)
if (seglength >= max_sep and i1 != i2 - 1):
# point separation is too far
# but always accept direct predecessor i1 = i2 - 1
if (seglength >= max_sep + options.max_dist):
# no chance to find a valid earlier predecessor point
break
else:
continue
if points[i1]['cost'] + 1.0 > costmin:
# the possible predecessor i1 is already too bad.
continue
i1_i2_segment_valid = True
lower_i1_possible = True
distance_squaremax = 0.0
distance_squaresum = 0.0
distances_squared = []
# iterate all medium points between i1 and i2
for im in range(i1+1, i2):
pm = points[im]['p']
d = distance (p1, pm, p2, options.ele_weight)
if (d <= options.max_dist):
d_sq = (d / options.max_dist) ** 2
distance_squaremax = max(distance_squaremax, d_sq)
distance_squaresum += points[im]['weight'] * d_sq
distances_squared.append(d_sq)
else:
i1_i2_segment_valid = False
# check if connection to any further point i1 is impossible
d1 = dot (vmin (p1, p2), vmin (p1, p2))
d2 = dot (vmin (pm, p2), vmin (pm, p2))
dd = options.max_dist ** 2
d1d2 = dot (vmin (p1, p2), vmin (pm, p2))
# formula from cosines of point separation angle and cone-opening angles around points
if (d1 > dd and d2 > dd and (d1d2 + dd)**2 < (d2 - dd) * (d1 - dd)):
lower_i1_possible = False
break
if (lower_i1_possible == False):
break
if i1_i2_segment_valid:
if options.weighting == 'sqrdistmax':
penalties[i1] = distance_squaremax
elif options.weighting == 'sqrdistsum':
penalties[i1] = distance_squaresum
elif options.weighting == 'sqrlength':
penalties[i1] = (seglength / max_sep) ** 2
elif options.weighting == 'mix':
penalties[i1] = (distance_squaremax * (1.0 + seglength / max_sep))
elif options.weighting == 'exp':
penalties[i1] = 0.5 * sum([0.5**i * d for i, d in
enumerate(sorted(distances_squared, reverse=True))])
else:
penalties[i1] = 0.0
# add a penalty for kinks
if options.bend > 0.:
if points[i1]['prev'] != -1:
p0 = points [points [i1]['prev']] ['p']
v0 = vmin (p1, p0)
v1 = vmin (p2, p1)
if norm (v0) > 0. and norm (v1) > 0.:
v0 = sdiv (v0, norm (v0))
v1 = sdiv (v1, norm (v1))
kink = (1.0 - dot (v0, v1)) / 2.0
penalties[i1] += options.bend * kink
# find best predecessor
imin = None
costmin = float('inf')
for prev, penalty in penalties.iteritems():
# cost function is sum of points used (1.0) plus penalties
cost = points[prev]['cost'] + 1.0 + penalty
if cost < costmin:
imin = prev
costmin = cost
points[i2]['cost'] = costmin
points[i2]['prev'] = imin
# print progess
if options.verbose == 1 and (100 * i2) / n > progress and time.time() >= tprint + 1:
tprint = time.time()
progress = (100 * i2) / n
print '\r', progress, '%',
sys.stdout.flush()
progress_printed = True
if progress_printed:
print '\r',
# trace route backwards to collect final points
final_pnums = []
i = n-1
while i >= 0:
final_pnums = [i] + final_pnums
i = points[i]['prev']
return [original_indices[i] for i in final_pnums]
############################## main function #################################
for fname in args:
# initialisations
ntot = 0 # total number of trackpoints (sum of segments)
newtot = 0 # total number of trackpoints after removal
# import xml data from files
print 'opening file', fname
infile = open(fname)
tree = etree.parse(infile)
infile.close()
gpx = tree.getroot()
nsurl = gpx.tag.split ('}')[0][1:] # == 'http://www.topografix.com/GPX/1/1'
etree.register_namespace('', nsurl) # default namespace -> xmlns:.... in the output
nsmap = '{' + nsurl + '}' # prefix for all tags in the tree
# extract data from xml
for si, trkseg in enumerate (gpx.findall('.//' + nsmap + 'trkseg')):
trkpts = trkseg.findall(nsmap + 'trkpt')
n = len(trkpts)
# extract coordinate values
lats = [float(trkpt.get('lat')) for trkpt in trkpts]
lons = [float(trkpt.get('lon')) for trkpt in trkpts]
eles = [float(trkpt.find(nsmap + 'ele').text) for trkpt in trkpts]
try:
times = [datetime.datetime.strptime(trkpt.find(nsmap + 'time'
).text, timeformat) for trkpt in trkpts]
except Exception as e:
print '-- trackpoint without time'
times = None
# calculate projected points to work on
coords = []
for i in range(n):
x, y, z = latlonele_to_xyz (lats[i], lons[i], eles[i])
coords.append((x, y, z))
# execute the reduction algorithm
final_pnums = reduced_track_indices(coords, times)
n_new = len (final_pnums)
print 'segment %d, with %d - %d = %d points' % (si, n, n - n_new, n_new)
ntot += n
newtot += n_new
# delete certain points from original data
delete_pnums = [i for i in range(n) if i not in final_pnums]
for i in reversed(delete_pnums):
trkseg.remove (trkpts[i]) # remove from the xml-tree
del trkpts [i] # also remove from the list
# remove certain sub-elements from remaining points
options.remove = options.remove.replace ('+','extensions,hdop,')
taglist = options.remove.split (',')
if taglist: print 'remove %s subelements from points' % ', '.join (taglist)
for trkpnt in trkpts:
for tag in taglist:
e = trkpnt.find (nsmap + tag)
if e != None: trkpnt.remove (e)
print 'total number of points: %d - %d = %d' % (ntot, ntot - newtot, newtot)
# export data to file
if options.ofname != None:
ofname = options.ofname
elif fname.endswith('.gpx'):
ofname = fname[:-4] + '_reduced.gpx'
else:
ofname = fname + '_reduced.gpx'
outfile = open(ofname, 'w')
tree.write (outfile, encoding="utf-8", xml_declaration=True, default_namespace=None, method="xml")
outfile.close()
print 'modified copy written to', ofname